APPENDIX IIB: Denmark

Acoustic Herring Survey report for RV "DANA"

 29^{th} June $2004 - 12^{th}$ July 2004

Bo Lundgren¹, Torben Filt Jensen², Teunis Jansen³ Danish Institute for Fisheries Research, ¹Dept for Marine Fisheries, Hirtshals, Denmark ²Dept. of IT and Technical Support, Hirtshals, Denmark ³Dept. of IT and Technical Support, Charlottenlund, Denmark

1. INTRODUCTION

Since 1991 the Danish institute for Fisheries Research (DIFRES) has participated in the ICES coordinated herring acoustic survey of the North Sea and adjacent waters with the responsibility for the surveying the Skagerrak and Kattegat area.

The actual 2004-survey with R/V DANA, covering the Skagerrak and Kattegat, was conducted in the period July 1 to July 12 2004, while calibration was done during June 29 – July 1.

2. SURVEY

2.1 Personnel

During calibration 29/6 – 1/7-2004	
Bo Lundgren (cruise leader)	HFI
Torben Filt Jensen(assisting cruise leader)	ITT
Teunis Jansen	HFI
Tommy Nielsen	ITT
Bo Tegen Nielsen	ITT
Claus Halle	ADM
During acoustic monitoring 1/7-12/7-2004	
Bo Lundgren (cruise leader)	HFI
Torben Filt Jensen (assisting cruise leader)	ITT
Teunis Jansen	ITT
Lise Sindahl	HFI
Helle Rasmussen	HFI
Tommy Kristensen	HFI
Rasmus F. Jensen	HFI
Bo Tegen Nielsen	ITT

HFI = Dept for Marine Fisheries, DIFRES, Denmark ITT = Dept. of IT and Technical Support, DIFRES, Denmark ADM = Administration Dept, DIFRES, Denmark

2.2 Narrative

R/V Dana left Hirtshals on June 29th 2003 at 12.00 for the calibration site in the Gullmar Fjord in Sweden. Some tests of the echosounder equipment and some preparations for the calibration next day were carried underway.

R/V Dana went to harbour in Frederikshavn on July 1 2004 at 13.00 for exchange of scientific personnel and left again at 18.00 (Danish local time, 16.00 UTC) with a southerly course to start the survey. The survey work (acoustic integration) started at 16.36 UTC on the position 57° 23.20' N 10° 37.60' E in the north-western part of the Kattegat. The Kattegat area was covered during July 2 – 3, eastern Skagerrak during July 4 – 6, western Skagerrak during July 7 – 9 and morning of July 12 and the overlap area during July 10 – 11. Short stops just outside Hirtshals on July 5 and just outside Hanstholm on July 7 was done to change personel. Totally the survey covered about 1700 nautical miles mainly using the 38 kHz paravane transducer running at depths of 4 – 6 m depending on the sea state and sailing direction relative to the waves. Simultaneously data from the 120 kHz and 18 kHz echosounders using the hull-mounted transducers were also recorded, but unfortunately the quality of these data were strongly dependent on the weather conditions. During trawling hull-mounted transducers were used for all three frequencies. The acoustic integration ended near the Danish coast in mid-Skagerrak at 06.27 UTC on the position 57° 39.40' N 09° 44.40' E. The survey ended in Hirtshals on 10 July 2003 at 11.00 hour.

2.3 Survey design

The survey was carried out in the Kattegat and in the Skagerrak, east of 6° E and north of 56° N (Fig. IIB.1). The area is split into 7 sub-areas surveyed by Dana and one overlap area to be surveyed also by the Norwegian and German survey partners. This year the survey was started in the eastern Kattegat and ended in the western Skagerrak in order to reach the overlap area on June 10th at the same time as the other partners. In principal the survey is designed with parallel survey tracks at right angles to the depth lines with a spacing of 10-15 nm in the area west of 10°E. Due to limited time periods and places for fishing (late morning, early afternoon and immediately before and after midnight; limited amount of fishable positions for bottom trawl hauls) this structure cannot not be kept strictly. Along the Swedish coast the transects are planned as east-west transects with a spacing of 10 nm approximately at right angles to the coastline. In Kattegat the survey track was made in a zigzag way adapted to the depth curves and the relatively heavy ship traffic.

2.4 Calibration

The echo sounders were calibrated at the Bornö Island site in the Gullmar Fjord, Sweden 29 June – 1 July 2004. This year the calibration procedures were different from earlier years because the echosounder equipment had been upgraded to EK60 with three frequencies (18, 38 and 120 kHz) earlier in the year. The modified procedures were introduced during a previous cruise to the North Atlantic with guidance from collegues at IMR in Bergen, Norway. Calibration of the paravane split-beam transducer at 38 kHz was done with a 60 mm copper sphere. Calibration of the three hull-mounted split-beam transducers at 18, 38 and 120 kHz were carried out with 63mm, 60 mm and 23 mm copper spheres, respectively. As a backup in case of failures in the new system calibration was also carried out with the 60 mm Cu-sphere on the paravane mounted 38 kHz transducer with the previously used EY500 echo sounder. The results were similar to the previous calibration earlier in the year, and for 38 kHz close to results from previous years. The calibration setup of the EK60 38 kHz used to produce the survey data is shown in Table **IIB.**1.

2.5 Acoustic data collection

Acoustic data were collected using mainly the Simrad EK60 38kHz echosounder with the transducer (Type ES 38 7x7 degrees main lobe) in a towed body. The towed body runs running at approx. 3 m depth in good weather and down to about 6 -7 m as needed depending on the weather conditions. The speed of the vessel during acoustic sampling was 8 - 10 knots. Also EK60 18 kHz and 120 kHz data were collected, but has not been used for the survey estimate since the data quality is very weather dependent due to the position of the transducers on the hull. Acoustic data were recorded as raw data on harddisk all 24 hours also during fishing operations, but data taken during fishing periods (usually two daytime hauls and two nighttime hauls (the latter immediately before and after local midnight)) are not used for the biomass estimate. The sampling unit (ESDU) was one nautical mile (nm). For the survey purpose raw data is pre-integrated into 1 m meter samples for each ping and stored as files on harddisk for each 1 nm interval. Integration is conducted from 3 m below the transducer to 1 m above the bottom or usually max 300 m depth. During trawl hauls the towed body is taken aboard and the EK60 38 kHz echosounder run on the hull transducer.

2.6 Biological data - fishing trawls

Trawl hauls were carried out during the survey for species identification. Pelagic hauls were carried out using a FOTÖ trawl (16 mm in the codend) while demersal hauls (Fig. IIB.2) were carried out using an EXPO trawl (16 mm in the codend). Trawling was carried out in the time intervals 1000 to 1800h and 2200 to 0300h UTC (Table **IIB**.2). The trawling strategy was made in a way that most depth zones were covered with in each geographical stratum (see Fig. **IIB**.2). In the deeper areas mid water hauls were made to identify until which depth herring will be found. 1 hour hauls were used as a standard during the survey, but sometimes shortened if the catch indicators indicated very large catches.

The fish caught were sorted into species groups and length groups within each species. Numbers and weight for each length group for each species was recorded with emphasis on pelagic species. The clupeid fish were measured to the nearest 0.5 cm total length below other fish to 1 cm and the weight to nearest 0.1g wet weight. In each trawl haul 10 (if available) herring per 0.5 cm length class were sampled for determination of age, race (North Sea autumn spawners or Baltic Sea spring spawmers) and maturity. Micro-structure formed during the larval period were used for the discrimination of herring race. Maturity was determined according to an 8-stage scale as also used by Scotland (see Survey Manual App IV).

2.7 Hydrographic data

CTD profiles with a Seabird 911 were made immediately before or after each trawl haul. Salinity and temperature were measured continuously during the cruise at an intake at about 5 m depth. Data is stored together with position and weather data in the vessel's general information system The distribution of CTD stations is shown in Fig. IIB.4.

2.8 Data analysis

The raw data is preintegrated into 1m samples for each ping and and divided into 1 mile datasets and stored on harddisk as files. Scrutiny of the acoustic data is done for a fixed set of layers (3-6 m, 6- 10, 10 - 20 and so on) for each mile, using special judging software. It allows deleting layers and/or intervals with interference from wave- or ship wake-bubbles or rarely with bottom-

integration. In areas with heavy abundance of jellyfish or zooplankton, usually krill, manually adjustable thresholds is applied separately to each layer to suppress background echoes

For each sub area the mean back scattering cross section was estimated for herring, sprat, gadoids and mackerel based on the TS relationships given in the Manual for Herring Acoustic Surveys in ICES Division III, IV, and IVa (ICES 2000):

Herring TS = $20 \log L - 71.2 dB$ Sprat TS = $20 \log L - 71.2 dB$ Gadoids TS = $20 \log L - 67.5 dB$ Mackerel TS = $20 \log L - 84.9 dB$

where L is the total length in cm. The number of fish per species is assumed to be in proportion to the contribution of the given species in the trawl hauls. Therefore, the relative density of a given species is estimated by subarea using the species composition in the trawl hauls. The nearest trawl hauls are allocated to subareas with uniform depth strata. The length-race and length-age distributions for herring are assumed to be in accordance with the length-race and length-age distributions in the allocated trawl hauls.

Length-weight relationships by race for the herring were made based on the single fish sampled in each haul and frozen for later for micro-structure analysis of the otolith after the cruise.

3. RESULTS & DISCUSSION

3.1 Acoustic data

The total number of acoustic sample units of 1 nm (ESDU's) used in the stock size calculation is about 1300. Herring and sprat was not observed in mid-water trawl hauls at depths below 150 meters. Therefore, layers below 150 meter were excluded from the estimation.

3.2 Biological data

35 hauls were conducted (18 surface hauls, 3 mid water hauls and 14 bottom hauls, two of which were unsuccessful (Figure IIB.2 and Tables IIB2 and IIB.3.). The total catch was 14 tons of which about on third was jellyfish and one third clupeids. Herring was present in 30 of the hauls and was the dominant catch in the fishery with a total catch at 4602 kg. No herring was present in hauls below 150 m depths. Blue whiting, mackerel, invertebrates (krill, shrimp, Norway lobster) and saithe, were the most common among the remaining species with a total catch of 1,515 kg, 428 kg, 679 kg and 241 kg respectively. They were mainly taken in the bottom and pelagic hauls, while mackerel and garfish were taken in surface hauls. Jellyfish were sometimes present in high quantities in the catches totally almost 5 tonnes. In the southern Kattegat totally 127 kg of sprat was taken. For herring the total catch was 4.6 tons which is somewhat higher than last year.

Based on maturity analysis of frozen single fish samples from each haul, where micro-structure analysis of the otoliths was used to differentiate between North Sea herring and Western Baltic herring, the maturity by age key was made for both races is given in the text table below. In accordance with the survey manual both North Sea autumn spawners and Baltic spring-spawners at

maturity state 3 and up have been considered as mature. The following constants have been used to split the catch.

North Sea autumn spawners:

WR	0im	1im	1ma	2im	2ma	3im	3ma	4	5
%	100	99	1	58	42	61	39	100	100

Western Baltic spring spawners:

WR	0im	1im	1ma	2im	2ma	3im	3ma	4	5	6	7	8	9+
%	100	100	0	96	4	90	10	100	100	100	100	100	100

Figure **IIB.4.a** shows the length-weight relations for various age groups an the average for the two races based on the single fish data. The trendline estimates are based on the points of the average relations. Figure **IIB.4.b** shows the length-weight relations for sprat.

Table **IIB.4.a** shows the size distribution and total number of herring in each trawl haul based on the total catch for small catches or on subsamples raised to total catch for large samples. Table **IIB.4.b** shows the corresponding total catches.

3.3 Biomass estimates

The total herring biomass estimate for the survey is 274,000 tonnes of which 28 % or 78,000 tonnes is North Sea autumn spawning herring and 72 % or 196,000 tonnes is Western Baltic spring spawning herring.

The estimated total number of herring, mean weight and mean length per age and maturity group in each of the surveyed strata for the two herring stock components in the are given in Table **IIB.5.a**, **b**, **and c**. Stratum 560E06 is the overlap area and the others together is the standard Danish survey area.

Figures **IIB.5.a and b** shows plots of the estimated number of herring per stratum and and the total with and without the overlap area.

Stratum overview Acoustic Herring Survey R/V Dana Cruise 07/04 July 2004

Stratum Nr	Stratum ID	Area Nm^2	Number of logs	Hauls in stratum	Hauls from neighbour strata	Total hauls used	Mean Sa	Mean TS
3	570E08	3406	266	7	4	11	272.5319	-42.40
4	570E06	3600	319	7	4	11	155.0617	-44.16
5	580E08	1822	142	2	5	7	57.68696	-42.28
6	580E06	209	11	1	2	3	201.8364	-42.62
7	С	988	97	2	3	5	198.3685	-44.36
8	D	1837	178	2	8	10	469.1892	-42.66
9	E	5228	385	9	-1	8	152.638	-46.86
Overlap	560E06	3980	270	4	4	8	86.06304	-44.49

Figure IIB.1. Map of the eastern North Sea, Skagerrak and Kattegat showing the sub areas used in the estimation during the July Danish acoustic survey of R/V Dana 2004.

Cruise track and stations during the Acoustic Herring Survey R/V Dana Cruise 07/04 July 2004

Figure IIB.2. Map of the eastern North Sea, Skagerrak and Kattegat showing cruise track, the location of stations (trawl hauls and CTD stations) during the July 2004 Danish acoustic survey (Fotö hauls ▲ are pelagic and Expo hauls 1 are demersal, Red numbers are haul IDs cumulative sailed distance along the track in nm).

Bathymetry from: The MAST project DYNOCS MAST II contract No MAS2-CT94-0088

Density in numbers of herring during the Acoustic Herring Survey R/V Dana Cruise July 2004

Figure IIB.3.a Contoured density (N/nm²) of herring from the July 2004 Danish acoustic survey in the eastern North Sea, Skagerrak and Kattegat.

Figure IIB.3.b Relative herring density (in numbers per nm²) along the track of the July 2004 Danish acoustic survey in the eastern North Sea, Skagerrak and Kattegat. Brown circles indicate relative density of herring per ESDU (1 nm).

Figure IIB.4.a Length weight relationship by winter ring numbers for herring from the July 2004 Danish acoustic survey.

Figure IIB.4.b Length weight relationship by winter ring numbers for sprat from the July 2004 Danish acoustic survey.

Figure IIB.5.a Estimed number of herring per length group in various strata from the July 2004 Danish acoustic survey.

Figure IIB.5.b Estimed number of herring per length group in various strata from the July 2004 Danish acoustic survey.

Transcei	ver Menu
Frequency	38 kHz
riequency	
Sound speed	1491 m.s ⁻¹
Max. Power	2000 W
Equivalent two-way beam angle	-20.5 dB
Default Transducer Sy gain	24 59 dB
3 dB Beamwidth	6 0°
o db beallwidth	0.9
15 of sphere	-33.0 0B
Range to sphere in calibration	9.17 m
Measured NASC value for calibration	23100 m²/nmi²
Calibration factor for NASCs	1.00
Log I	Menu
Distance	1,0 n.mi. using GPS-speed
Operatio	on Menu
Ping interval	1 s external trig
Analysis	settings
Bottom margin (backstep)	1.0 m
Integration start (absolute) depth	7 - 9 m
Range of thresholds used	-70 dB

 Table IIB.1.
 Simrad EK60 and analysis settings used during the the Acoustic Herring Survey R/V Dana Cruise July 2004

Table IIB	. 2 . Tr	awl ha	auls dur	ing the Ac	cousti	c Herri	ing Su	rvey F	R/V D	ana Cru	uise J	uly 2004
									-			

										Door								
Haul		Sun	ICES				Catch	Mean	Wire	span	Trawling	Catch		Speed	Course	Wind	Wind	Sea
ID	Date Time UTC	time	square	Lat N	Long E	Irawl	Depth	BDepth	length	m	duration	kg	Main Species	kn	deg	m/s	deg	Beat
87	02-07-04 01:30	02:16	42G1	56.30.400	011.31.555	fotø	surface	27.3	300	70	48	2000	Jellyfish, Sprat, Herring, Mackerel, Common Weaver	4.1	345	9	251	2
1/2	02-07-04 10:33	11:22	41G2	56.14.778	012.19.143	ехро	bottom	26	250	68	30	650	Jellyfish, Whiting, Sprat, Herring, Anchovy	3	346	8	247	3
199	02-07-04 14:05	14:53	42G2	56.40.754	012.10.034	expo	bottom	42.8	300	72	60	208	Jellyfish, Herring, Cod, Whiting, Plaice, Sprat	2.9	319	8	242	3
249	02-07-04 21:28	22:15	42G1	56.38.824	011.50.098	fotø	surface	36	300	70	30	220	Jellyfish, Herring, Sprat, Common Weaver	3.7	220	1	220	2
269	03-07-04 00:12	01:00	42G2	56.55.647	012.07.740	totø	surface	49	300	75	30	1400	Jellyfish, Herring, Sprat, Garfish, Mackerel	4	26	4	227	2
358	03-07-04 10:30	11:17	43G1	57.05.432	011.49.516	ехро	X	58.4	350	11	59	000	I rawi torn	3	004	5	146	
382	03-07-04 14:17	15:02	43G1	57.14.090	011.18.180	expo	bottom	30.2	270	63	60	296	Common Weaver, Sprat, Jellyrish, Dab, Whiting, Herring	3.2	221	5	209	1
435	03-07-04 21:19	22:03	44G1	57.31.860	011.05.959	totø	surface	40.7	330	70	60	380	Jellyfish, Herring, Mackerel, Garrish	3.7	55	5	286	2
442	04-07-04 00:22	01:07	44G1	57.38.072	011.27.034	totø	surface	86.1	330	/4	60	903	Jellyfish, Herring, Mackerel, Horse Mackerel	3.9	349	4	243	2
530	04-07-04 11:57	12.40	4500	58 17 661	010 57 882	evno	bottom	111.8	500	82	22	125	Rilli, Saline, Cou, Doylish, Whiling, Blue Whiling, Norway Pout Herring (Common Weaver) Pearlside	20	13	5	237	2
625	04-07-04 21:20	22.40	4660	58 46 571	010.07.002	fotø	surface	70.2	375	82	60	450	lellufish Herring Mackerel Garfish	2.3		0 0	210	- 2
645	05-07-04 00:44	01.27	4660	58 36 453	010.40.300	fotø	surface	84.6	375	70	60	465	Jellyfish Herring Mackerel Lumpsucker	12	17	7	213	3
040	03-07-04 00.44	01.27	4000	30.30.433	010.47.710	1010	Sunace	04.0	575	10	00	+03	Dab Whiting Jellyfish Herring Cod Gurnards Horse	7.2			223	
728	05-07-04 10:15	10:53	44F9	57.43.485	009.41.900	expo	bottom	35.9	300	72	30	75	Mackerel	3.5	54	11	256	4
759	05-07-04 14:33	15:12	44F9	57.52.366	009.47.218	expo	bottom	60	400	77	45	990	Herring, Haddock, Saithe, Cod, Flatfish	3.4	75	9	263	4
810	05-07-04 21:37	22:14	46F9	58.29.788	009.17.814	fotø	surface	452.1	390	80	60	312	Herring, Jellvfish, Mackerel, Garfish	2.4	60	5	262	2
													Herring, Jellyfish and Krill, Garfish, Lumpsucker, Saithe,			-		
882	06-07-04 00:23	01:01	46F9	58.30.504	009.41.260	fotø	surface	592.9	425	80	60	200	Mackerel	3.7	92	7	297	3
													Blue Whiting, Shrimps, Saithe, Vahls Eelpout, Lumpsucker,					
906	06-07-04 10:44	11:24	45G0	58.06.719	010.01.744	expo	bottom	201	860	89	60	1407	Cod, Haddock	2.7	69	7	268	4
				/ -				100.0					Jellyfish, Herring, Saithe, Norway Pout, Haddock,			10		_
927	06-07-04 14:32	15:11	44F9	57.58.040	009.50.590	expo	bottom	100.8	640	/8	60	322	Lumpsucker, Hake	3.3	69	12	261	5
080	06 07 04 23:34	00.10	44E0	57 57 151	000 06 706	fota	curfaco	450.8	420	86	61	200	Blue Whiting, Herring, Jellyfish, Lumpsucker, Salthe,	37	99	12	283	Б
900	07.07.04.14:52	15:24	4469	57.57.151	009.00.790	0100	v	409.0	420	00	60	290		3.7	00	11	203	5
1104	07-07-04 14.52	15.24	4360	57.25.220	006.01.259	expo	^	/ 1.4	500	91	00		Herring Mackerel, Jellyfish, Saithe Lumpsucker, Blue	3			301	
1139	07-07-04 21.25	21.56	44F7	57 48 736	007 53 955	fotø	surface	513.2	350	89	61	680	Whiting Garfish	3	104	6	301	4
1154	08-07-04 00:23	00:55	44F8	57.57.902	008.05.575	fotø	surface	520.7	400	78	66	265	Herring, Mackerel, Jellvfish, Garfish, Lumpsucker	1.7	101	2	295	3
	00 01 01 00.20	00.00		011011002	00000010		Ganado	020					Jellvfish, Saithe, Blue Whiting, Shrimp, Lumpsucker, Krill.					
1239	08-07-04 10:37	11:06	44F7	57.33.442	007.24.534	fotø	230-250	263.4	1140	112	60	75	Pearlside	3.6	285	8	76	2
1251	08-07-04 13:09	13:38	44F7	57.33.112	007.22.143	fotø	138-158	259	915	109	60	115	Saithe, Pearlside, Krill, Lumpsucker	3.5	281	10	57	3
													Herring, Krill and Jellyfish, Blue Whiting, Lumpsucker,					
1310	08-07-04 21:28	21:53	45F6	58.04.506	006.22.160	fotø	surface	343	470	80	60	430	Mackerel, Dogfish	4.2	276	9	52	4
1327	09-07-04 00:29	00:54	44F6	57.55.109	006.15.591	fotø	surface	309.1	415	83	60	480	Herring, Krill and Jellyfish, Blue Whiting, Garfish, Mackerel	4.5	259	13	85	4
1394	09-07-04 10:24	10:51	43F6	57.11.008	006.51.306	ехро	bottom	66.1	400	80	30	260	Herring, Haddock, Jellyfish, Whiting	3.1	313	4	76	3
1413	09-07-04 13:47	14:12	43F6	57.05.987	006.21.396	ехро	bottom	61.2	400	86	61	295	Herring, Dab, Haddock, Cod, Jellyfish, Gurnard, Flatfish	3.1	311	2	130	2
													Herring, Blue Whiting, Krill and Jellyfish, Mackerel,					
1470	09-07-04 21:39	22:09	43F7	57.27.995	007.44.353	fotø	surface	157	375	/2	62	380	Lumpsucker, Garfish	3.8	81	1	351	2
1484	10-07-04 00:23	00:55	43F8	57.26.143	008.05.567	fotø	surface	91.5	375	72	60	240	Herring, Jellyfish, Mackerel, Garfish, Lumpsucker	4.6	78	4	59	2
1567	10-07-04 10:38	11.05	12E6	56 32 850	006 48 374	evno	bottom	/1 9	360	77	50	72	Cod	36	84	Q	202	1
1586	10-07-04 10.36	14.24	41F7	56 17 625	007 03 584	expo	nelagic	41.0	200	67	00	10	lellufish Gurnards Herring Sprat (small catch)	1.0	70	11	293	
1643	10-07-04 13.30	22:06	41F7	56 03 347	007.03.304	expo	surface	20,1	290	68	21	10 Q	lellufish Mackerel Garfish Herring (very small catch)	4.2 4 1	61	12	268	
10-13	10-07-04 21.30	22.00		00.00.047	001.00.020	GAPO	Junace	23.1	500	00	51	0	Mackerel Horse mackerel Garfish Jellyfish Herring	7.1		12	200	
1664	11-07-04 00:34	01:01	41F6	56.09.636	006.51.611	fotø	surface	37,4	320	72	60	83	Gurnards.	4.2	111	9	271	5
1741	11-07-04 10:34	10:57	42F5	56.35.829	005.53.206	expo	bottom	51.1	400	83	60	230	Herring, Dab, Jellyfish, Flatfish. Whiting. Gurnards	3.3	118	10	316	5
			-										c, , , ,	2.5				-

Weight Total Kg	Station	87	172	199	249	269	382	435	442	539	625	645	728	759	810	882	906
5 5	Fishing depth	surface	bottom	bottom	surface	surface	bottom	surface	surface	bottom	surface	surface	Bottom	bottom	surface	surface	bottom
	Gear Type	Fotø	Expo	Expo	Fotø	Fotø	Expo	Fotø	Fotø	Expo	Fotø	Fotø	Expo	Expo	Fotø	Fotø	Expo
	Area	E	E	E	E	E	E	E	E	D	С	С	570E08	570E08	580E08	580E08	D
Species	ICES Sq	42G1	41G2	42G2	42G1	42G2	43G1	44G1	44G1	45G0	46G0	46G0	44F9	44F9	46F9	46F9	45G0
Scyphozoa		1962.400	547.976	153.556	153.154	1308.232	21.708	257.502	537.206		320.660	217.610					
Clupea harengus		16.352	18.280	27.694	49.694	84.223	12.938	112.803	320.135	5.530	106.692	211.202	3.160	945.685	263.558	141.691	
Micromesistius poutassou										7.035							1196.952
Scomber scombrus		2.787			0.254	0.999		4.574	42.207	0.158	16.900	30.500			20.223	1.140	
Invertebrata													5.626		22.229	34.330	
Euphausiidae										299.393							
Pollachius virens										49.500				9.700		6.480	36.600
Trachinus draco		1.481	5.296	0.068	2.052	0.704	154.844			4.400		0.202	0.664				
Limanda limanda			4.342	0.630	0.050		20.859						33.298	4.050			
Sprattus sprattus		16.356	29.567	0.856	14.030	4.714	61.262	0.162	0.304								
Cyclopterus lumpus			1.022		0.160					0.804		4.800				7.940	12.600
Merlangius merlangus		0.050	32.631	5.096	0.210	0.091	17.656	0.476	0.428	10.900	0.406	0.132	23.250		0.096		
Pandalus borealis																	101.628
Gadus morhua			1.094	17.800			0.318			23.900			3.152	7.100			11.100
Belone belone					0.178	1.101		4.244		0.052	3.774	0.570			5.850	8.410	
Melanogrammus aeglefinus				0.154	0.010			0.010		0.968			0.690	18.295	0.012		6.907
Maurolicus muelleri										3.505					0.018		0.113
Trachurus trachurus							0.859	0.190	2.052				1.532				
Lycodes vahlii																	36.097
Eutrigla gurnardus		0.057		0.034			0.492						1.646				
Trisopterus esmarkii				0.220						5.860							0.301
Squalus acanthias										11.900							
Hippoglossoides platesso				0.200									0.246	3.042			0.151
Engraulis encrasicolus		0.039	9.808		0.200		0.087	0.042	0.113				0.028				
Pleuronectes platessa			0.124	1.414			3.193						0.482	1.172			
Merluccius merluccius										0.032			0.478	0.200			
Pasiphaea sp.																	
Hyperoplus lanceolatus		0.061															
Microstomus kitt				0.272						0.184			0.664	0.794			
Sardina pilchardus																	
Myxine glutinosa																	1.769
Salmo trutta											1.560						
Cephalopoda																	0.412
Scophthalmus rhombus							1.224										
Glyptocephalus cynogloss																	0.910
Enchelyopus cimbrius																	0.866
Raja radiata										0.794							
Trigla lucerna									0.552								
Solea vulgaris							0.531										
Nephrops norvegicus										0.066							0.404
Notoscopelus kroeyeri																	
Zeugopterus punctatus																	0.169
Buglossidium luteum																	
Ammodytidae	1																
Grand Total		1999.582	650,141	207.994	219.992	1400.064	295.972	380.003	902.998	424.981	449.992	465.016	74.916	990.038	311.986	199.991	1406.978

Table IIB.3. Trawl haul species composition in kg during the Acoustic Herring Survey R/V Dana Cruise July 2004

	inaminat			110010		ig dui	ing the	<u>, , , , , , , , , , , , , , , , , , , </u>		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Juivey					<u> </u>		<u> </u>		
Weight Total Kg	Station	927	980	1139	1154	1239	1251	1310	1327	1394	1413	1470	1484	1567	1586	1643	1664	1741	Total	Max
	depth	bottom	surface	surface	surface	250-	138-158	surface	surface	bottom	bottom	surface	surface	bottom	Pelagic	surface	surface	bottom	Survey	Survey
	Gear Type	Expo	Fotø	Fotø	Fotø	Fotø	Fotø	Fotø	Fotø	Expo	Expo	Fotø	Fotø	Expo	Expo	Expo	Fotø	Expo		
	Area	570E08	570E08	570E06	570E08	570E06	570E06	580E06	570E06	570E06	570E06	570E06	570E08	560E06	560E06	560E06	560E06	560E04		
Species	ICES Sq	44F9	44F9	44F7	44F8	44F7	44F7	45F6	44F6	43F6	43F6	43F7	43F8	42F6	41F7	41F7	41F6	42F5		
Scvphozoa	•	176.576		22.048	73.044	33.354							88.015		5.084	4.840	3.802		5886.768	1962.400
Clupea harengus		66.294	93.974	546.369	92.400			274.072	329.340	241.447	211.312	127.614	126.294	0.318	2.118	0.102	0.522	170.849	4602.662	945.685
Micromesistius poutassou			115.623	5.631	0.428	10.816		52.391	34.331			91.947							1515.154	1196.952
Scomber scombrus			2.662	88.847	84.200			2.430	6.520			64.403	18.428	0.668		1.664	38.480		428.043	88.847
Invertebrata			15.397					96.584	97.065	3.747	5.671	70.448		18.424				7.854	377.375	97.065
Euphausiidae						3.916	16.879												320.187	299.393
Pollachius virens		36.730	28.600	7.600		12.200	54.500												241.910	54.500
Trachinus draco																			169.711	154.844
Limanda limanda										0.304	33.348			5.460				38.226	140.567	38.226
Sprattus sprattus															0.097				127.349	61.262
Cyclopterus lumpus		6.500	33.700	6.500	1.020	5.300	5.154	3.214				22.500	1.924						113.138	33.700
Merlangius merlangus		1.710	0.061	0.141	0.308	0.014		0.285	0.224	1.706	1.600	0.356	0.656	10.098	0.026		0.006	3.404	112.018	32.631
Pandalus borealis																			101.628	101.628
Gadus morhua		0.462								0.144	17.700			3.788				0.072	86.630	23.900
Belone belone				2.854	13.600			0.214	11.840			2.756	2.824	0.468		0.998	6.555		66.288	13.600
Melanogrammus aeglefinus		11.910				0.006			0.032	12.486	11.778		0.036	0.184				0.322	63.800	18.295
Maurolicus muelleri		0.008	0.009			0.298	38.467												42.418	38.467
Trachurus trachurus														3.850		0.434	33.431		42.348	33.431
Lycodes vahlii																			36.097	36.097
Eutrigla gurnardus											2.474			19.510	2.960		0.296	2.371	29.840	19.510
Trisopterus esmarkii		18.102				0.076					0.279								24.838	18.102
Squalus acanthias								0.644											12.544	11.900
Hippoglossoides platesso											0.512			0.120				6.516	10.786	6.516
Engraulis encrasicolus																			10.316	9.808
Pleuronectes platessa											2.242			1.362					9.989	3.193
Merluccius merluccius		2.958												4.900				0.372	8.940	4.900
Pasiphaea sp.						8.777													8.777	8.777
Hyperoplus lanceolatus										0.090	6.137			1.260					7.548	6.137
Microstomus kitt		0.462								0.080	1.928								4.384	1.928
Sardina pilchardus													1.828				0.152		1.980	1.828
Myxine glutinosa																			1.769	1.769
Salmo trutta		0.404						0.400	0.704										1.560	1.560
		0.184						0.162	0.721										1.479	0.721
Scophinalmus mombus																			1.224	1.224
Gipplocephalus cynogloss																			0.910	0.910
Enchelyopus cimbrius																			0.000	0.000
																			0.794	0.794
Soloa vulgaris																			0.552	0.552
Nenhrons norvegicus																			0.031	0.001
Notosconelus kroeveri						0 220													0.470	0.404
						0.230													0.230	0.200
Budossidium luteum																0.006			0.109	0.109
Ammodytidae																0.000	0.004		0.000	0.000
Grand Total		321 896	290 025	679 989	265.000	74 988	115 000	429 996	480 074	260 004	294 982	380 024	240.006	70.410	10 285	8 044	83 248	229 986	14614 600	1999 582

Table IIB.3. Trawl haul species composition in kg during the Acoustic Herring Survey R/V Dana Cruise July 2004 (continued)

1	560E04	560E0	06			570E0	06				570E0	8					580E06	580E0	8	С		D	E	-] -			- • •		-) -		
	42F5	41F6	41F7		42F6	43F6		43F7	44F6	44F7	43F8	44F8	44F9				45F6	46F9	-	46G0		45G0	41G2	42G1		42G2		43G1	44G1		
	1741	1664	1586	1643	1567	1394	1413	1470	1327	1139	1484	1154	728	759	927	980	1310	810	882	625	645	539	172	87	249	199	269	382	435	442	
Length	EXPO	FOTØ	EXPO	EXPO	EXPO	EXPO	EXPO	FOTØ	FOTØ	FOTØ	FOTØ	FOTØ	EXPO	EXPO	EXPO	FOTØ	FOTØ	FOTØ	FOTØ	FOTØ	FOTØ	EXPO	EXPO	FOTØ	FOTØ	EXPO	FOTØ	EXPO	FOTØ	FOTØ	Total
Length 5.5 7 9 9.5 10 10.5 11 11.5 12.5 13.5 14.5 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24.5 25.5	42F5 1741 EXPO 44 148 1022 1940 1333 622 178 15 30	41F6 1664 FOTØ	41F7 1586 EXPO 5 62 126 70 6 3 2 2	1643 EXPO 1 1	42F6 1567 EXPO 2 1 3 3 2 1	43F6 1394 EXPO 5 57 277 288 307 155 60 333 22 8 5 5	1413 EXPO 96 439 1002 1167 1359 906 439 233 55 41 14	43F7 1470 FOTØ FOTØ 4 4 4 4 4 4 7 7 5 4 50 25 33 350 66 91 137 95 141 700 70	44F6 1327 FOTØ 9 9 28 75 224 373 233 457 467 280 336 168 112	44F7 1139 FOTØ FOTØ 16 63 47 173 425 709 756 583 410 504 441 142 189	43F8 1484 FOTØ	<u>44F8</u> <u>1154</u> FOTØ 1 2 7 7 12 27 34 36 22 23 18 18 18 19 13	44F9 728 EXPO 1 2 1 4 8 11 10 12 4 4 1 1 1 1 1	759 EXPO 41 81 122 284 609 731 1055 2070 1827 1908 1543 812 487 41 41	927 EXPO 2 6 15 13 28 63 72 80 63 57 25	980 FOTØ 4 4 4 29 46 67 67 83 92 63 46 67 58	45F6 1310 FOTØ FOTØ 4 4 4 4 25 68 121 107 153 143 135 110 75 25	46F9 810 FOTØ 53 80 320 386 440 280 173 160 213 120 40	882 FOTØ 5 30 61 142 188 208 117 91 46 41 41	46G0 625 FOTØ FOTØ 4 8 8 332 123 287 4 238 332 189 82 74 4 21 8 8 4	645 FOTØ 21 64 213 245 351 532 543 585 351 202 106 11 21	45G0 539 EXPO 1 1 1 4 6 2 3 3 13 3 5 2 4	41 <u>G2</u> 172 EXPO 4 32 105 84 77 61 28 16 6 20 19 18 19 12 12 2 4 4 2	42G1 87 FOTØ FOTØ 2 5 5 37 91 102 77 55 46 14 4 18 20 9 9 2 4 7 7 4 6 14 2 2 2 2 2 2 2 2 2 2	249 FOTØ 4 218 473 417 332 59 22 7 7 4 11 4 4 18 4 4 4 4	42G2 199 EXPO 2 2 2 9 9 75 158 194 94 21 15 4 9 17 2 11 11 6 4 2 2 2 9 9 75 158 194 94 2 2 9 9 75 158 194 94 2 2 9 9 75 158 194 94 2 2 9 9 75 158 194 94 2 2 9 9 75 158 194 94 2 2 9 9 75 158 194 94 2 2 9 9 75 158 194 94 2 2 9 175 158 194 94 2 2 9 175 175 175 175 175 175 175 175	269 FOTØ 11 24 73 184 211 24 15 15 29 13 11 22 7 4 4 2	43G1 382 EXPO 5 29 24 5 14 5 10 10 48 63 39 4 29 5 10 10 48 5 5 5 5 10 10 5 5 5 5	44G1 435 FOTØ 51 42 295 464 489 270 110 118 110 127 101 93 34 8 8 17	442 FOTØ 14 14 139 474 752 571 348 251 334 251 334 418 376 195 181 70 14 14	Total 3 1 5 34 866 7 3 2 2 666 3655 1995 3747 3700 2800 2230 2800 2230 1709 1364 1690 2430 2400 4342 4723 3974 43025 2249 1530 1429 8399 579
26 26.5 27 27.5 28 28.5 29 29.5 30 30.5 31.5	5222	20	276	6	12	1004	E7E1	17 21 8 4 8 12 4 4 4 4 4 4	121 28 47 9 9 19 9 9 9 9	189 95 110 63 16 32 16 16	840	1 7 6 1 1 1	50	11651	49 27 15 4 8 6 2 2	46 63 17 8 8 13 4 4	29 18 14 4 4 4	93 40 27 13 13 13	10 15 15 10	4 4	2045	1 1 2 1	500	EQE	1640	2 2 4	2	267	2227	14 56 14 28 42 14	576 373 279 150 104 82 64 22 19 13 4 57842
Total	5332	20	276	6	13	1224	5751	1206	3024	4994	849	248	59	11651	536	805	1041	2464	1520	1612	3245	54	523	505	1610	671	720	367	2337	5	184

Table IIB.4.a Raised length frequency composition by stratum and trawl station for the Acoustic Herring Survey R/V Dana Cruise July 2004

Table IIB.4.b Raised catch weights of herring by trawl station for the Acoustic Herring Survey R/V Dana Cruise July 2004

	560E04	560E0)6			570E0)6				570E0	8					580E06	580E0	8	С		D	E								
	42F5	41F6	41F7		42F6	43F6		43F7	44F6	44F7	43F8	44F8	44F9				45F6	46F9		46G0		45G0	41G2	42G1		42G2		43G1	44G1		.
	1741	1664	1586	1643	1567	1394	1413	1470	1327	1139	1484	1154	728	759	927	980	1310	810	882	625	645	539	172	87	249	199	269	382	435	442	
Total	EXPO	FOTØ	EXPO	EXPO	EXPO	EXPO	EXPO	FOTØ	FOTØ	FOTØ	FOTØ	FOTØ	EXPO	EXPO	EXPO	FOTØ	FOTØ	FOTØ	FOTØ	FOTØ	FOTØ	EXPO	EXPO	FOTØ	FOTØ	EXPO	FOTØ	EXPO	FOTØ	FOTØ	Total
Catch	170.8	0.52	2.11	0.10	0.32	241	211	127	329	546	126	92.4	3.16	945	66.3	94.0	274	264	142	107	211	5.53	18.3	16.4	49.7	27.7	84.2	12.9	113	320	3

Table IIB.5a Numbers of herring by age, maturity, stock and sub area for the Acoustic Herring Survey R/V Dana Cruise July 2004

	North S	ea Autum	n spaw	ners.					_	_	_	_	
	Abundar	nce (Millio	ns)							_		_	
Stratum	0	1i	1m	2i	2m	3i	3m	4	5	6	7	8	9+
580E06	0.00	1.33	0.01	4.55	3.32	0.83	0.53	0.10	0.02	0.00	0.00	0.00	0.00
570E06	0.00	192.25	1.54	59.37	43.36	10.63	6.88	1.56	0.23	0.00	0.00	0.00	0.00
580E08	0.00	5.13	0.04	11.88	8.68	2.14	1.38	0.41	0.08	0.00	0.00	0.00	0.00
570E08	0.00	98.06	0.79	53.70	39.22	9.60	6.21	1.88	0.32	0.00	0.00	0.00	0.00
С	0.00	63.69	0.51	36.51	26.66	5.46	3.53	0.55	0.10	0.00	0.00	0.00	0.00
D	0.00	213.01	1.71	74.51	54.42	11.55	7.47	1.61	0.35	0.00	0.00	0.00	0.00
Е	45.45	3.28	0.03	2.26	1.65	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.00
560E06	113.37	194.78	1.56	3.48	2.54	0.43	0.28	0.01	0.00	0.00	0.00	0.00	0.00

	Baltic Sea Spr Abundance (M	ing spawn /iillions)	ers										
Stratum	0	1i	1m	2i	2m	3i	3m	4	5	6	7	8	9+
580E06	0.00	0.06	0.00	6.28	0.23	5.77	0.64	3.34	1.26	0.54	0.10	0.06	0.00
570E06	0.00	116.82	0.00	100.62	3.69	71.74	7.97	41.59	17.02	7.27	1.70	0.76	0.00
580E08	0.00	0.38	0.00	19.57	0.72	14.58	1.62	9.29	4.63	1.88	0.38	0.20	0.00
570E08	0.00	42.71	0.00	102.59	3.76	65.40	7.27	41.22	20.23	8.55	2.08	0.89	0.00
С	0.00	18.94	0.00	93.87	3.44	30.81	3.42	17.74	7.76	2.71	0.43	0.26	0.00
D	0.00	93.74	0.00	176.18	6.46	69.57	7.73	42.55	20.26	7.49	1.20	0.76	0.00
E	0.00	1286.61	0.00	287.64	10.55	53.62	5.96	16.55	6.30	5.71	0.00	0.88	0.00
560E06	0.00	300.05	0.00	22.02	0.81	2.77	0.31	1.06	0.07	0.02	0.00	0.00	0.00

Table IIB.5b Mean weight of herring by age, maturity, stock and subarea for the Acoustic Herring Survey R/V Dana Cruise July 2004

	North Sea Autumn spawners.								_				
	Mean weights (g)							_	_				
Stratum	0	1i	1m	2i	2m	3i	3m	4	5	6	7	8	9+
580E06	0.000	81.883	81.883	97.068	97.068	104.867	104.867	135.916	140.606	0.000	0.000	0.000	0.000
570E06	0.000	42.965	42.965	94.993	94.993	104.003	104.003	141.627	140.606	0.000	0.000	0.000	0.000
580E08	0.000	78.362	78.362	94.923	94.923	104.168	104.168	148.818	140.606	0.000	0.000	0.000	0.000
570E08	0.000	57.386	57.386	93.939	93.939	104.017	104.017	149.878	140.606	0.000	0.000	0.000	0.000
С	0.000	64.931	64.931	89.720	89.720	98.623	98.623	137.925	140.606	0.000	0.000	0.000	0.000
D	0.000	56.261	56.261	90.889	90.889	100.196	100.196	146.575	140.606	0.000	0.000	0.000	0.000
Е	7.183	48.708	48.708	94.457	94.457	0.000	0.000	0.000	158.147	0.000	0.000	0.000	0.000
560E06	6.226	33.755	33.755	83.988	83.988	90.073	90.073	116.846	0.000	0.000	0.000	0.000	0.000

	Baltic Sea Spring spawners Mean weights (g)					_							
Stratum	0	1i	1m	2i	2m	3i	3m	4	5	6	7	8	9+
580E06		66.463		89.474	89.474	111.410	111.410	119.495	137.942	153.338	177.725	165.294	0.000
570E06		37.116		85.435	85.435	111.946	111.946	121.162	141.237	151.587	173.053	168.508	0.000
580E08		64.369		86.395	86.395	113.224	113.224	124.426	144.974	147.363	173.750	163.838	0.000
570E08		48.917		83.160	83.160	113.545	113.545	124.464	144.811	149.352	179.591	166.021	0.000
С		56.566		79.004	79.004	109.610	109.610	119.740	141.388	144.334	135.303	159.797	0.000
D		49.592		79.970	79.970	110.801	110.801	121.920	143.888	147.097	154.441	159.531	0.000
E	0.000	36.872		64.776	64.776	76.972	76.972	94.693	137.347	133.478	0.000	0.166	0.000
560E06	0.000	0.034		0.075	0.075	0.096	0.096	0.098	0.114	0.120	0.000	0.000	0.000

 Table IIB.5c
 Mean length of herring by age, maturity, stock and subarea for the Acoustic Herring Survey R/V Dana Cruise July 2004

North Sea Autumn spawners.								_	_	_	_	_	
Mean lengths (cm)								_	_	_	_	_	
Stratum	0	1i	1m	2 i	2m	3i	3m	4	5	6	7	8	9+
580E06	0.00	21.82	21.82	23.04	23.04	23.61	23.61	25.63	26.00	0.00	0.00	0.00	0.00
570E06	0.00	17.54	17.54	22.88	22.88	23.54	23.54	25.97	26.00	0.00	0.00	0.00	0.00
580E08	0.00	21.51	21.51	22.87	22.87	23.55	23.55	26.40	26.00	0.00	0.00	0.00	0.00
570E08	0.00	19.35	19.35	22.78	22.78	23.53	23.53	26.45	26.00	0.00	0.00	0.00	0.00
С	0.00	20.22	20.22	22.45	22.45	23.12	23.12	25.78	26.00	0.00	0.00	0.00	0.00
D	0.00	19.26	19.26	22.54	22.54	23.24	23.24	26.27	26.00	0.00	0.00	0.00	0.00
Е	9.97	18.50	18.50	22.75	22.75	0.00	0.00	0.00	27.00	0.00	0.00	0.00	0.00
560E06	9.03	16.25	16.25	21.98	21.98	22.48	22.48	24.50	0.00	0.00	0.00	0.00	0.00

	Baltic Se	ea Spring	g spawr	ners									
	Mean lengths (cm)												
Stratum	0	1i	1m	2i	2m	3i	3m	4	5	6	7	8	9+
580E06		20.42		22.44	22.44	24.09	24.09	24.60	25.77	26.60	27.83	27.32	0.00
570E06		16.88		22.10	22.10	24.11	24.11	24.70	25.96	26.53	27.61	27.50	0.00
580E08		20.19		22.19	22.19	24.19	24.19	24.91	26.19	26.34	27.60	27.25	0.00
570E08		18.44		21.91	21.91	24.22	24.22	24.91	26.18	26.44	27.91	27.37	0.00
С		19.37		21.56	21.56	23.94	23.94	24.60	25.98	26.17	25.68	27.04	0.00
D		18.54		21.64	21.64	24.02	24.02	24.74	26.13	26.32	26.68	27.02	0.00
Е	0.00	16.86		20.19	20.19	21.35	21.35	22.77	25.68	25.22	0.00	27.44	0.00
560E06	0.00	16.38		21.17	21.17	23.00	23.00	23.13	24.30	24.68	0.00	0.00	0.00