Cruise Report HE-249, 8. – 16. May 2006

Re.: 05/23541, 9 February 2006, NPD 05/993 /WeS

Chief Scientist: Dr. Meinhard Simon,

Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg

Aim

This cruise was a follow-up of cruise HE-238 on the same track in September 2005 and focused on plankton dynamics in spring in the North Sea with a special emphasis on the role of the bacterioplankton and bacteria at the oxic sediment surface. We aimed to study the dynamics of phytoplankton at various conditions, i.e. bloom versus non-bloom conditions, and spatio-temporal patterns in the North Sea. We were particularly interested into two major bacterioplankton groups in the North Sea, the SAR11 clade and a narrow cluster of the *Roseobacter* group (RCA cluster).

Cruise track, stations, sampling and parameters studied.

As outlined in Figs. 1 and 2, the cruise track went from Bremerhaven to 59 °N and back south. The track was basically identical to that of cruise HE-238. We were lucky in hitting a situation with a pronounced plankton bloom in the southern North Sea and decreasing chlorophyll concentrations towards the northern part. In total 27 stations were visited at which various hydrographical, chemical and biological measurements, mainly in the water column, were carried out (see Tables on station overview and parameter overview).

Results

We encountered the typical spring phytoplankton with a pronounced bloom in the southern North Sea, dominated by diatoms and further north, at decreasing chlorophyll a concentrations, relatively more dinoflagellates and some green algae were recorded. In the very north. Close to the Norwegian coast, high chlorophyll values also indicated a phytoplankton bloom. The zoo-plankton was always dominated by copepods but at a few stations quite a few cladocerans were present as well as meroplanktonic larvae and pelagic tunicates. The patterns of suspended matter and chlorophyll a from south to north is depicted on Fig. 3.

First results indicate that the SAR11 clade constituted between up to 20% of the total and the RCA cluster up to 10% of total bacterioplankton. Highest fractions both of the SAR11 clade and the RCA cluster appeared at the northern fringe and in the Wadden Sea.

These data were obtained by quantitative real time PCR with appropriate primer systems specific for the respective target groups.

Conclusions and outlook

This cruise complements that of September 2005 and adds to the early fall situation the spring aspect to this study of the bacterioplankton dynamics in the North Sea. It showed that both target groups of the bacterioplankton are also prominent components of the bacterioplankton in spring and thus extends the findings of the fall cruise to the spring situation.

Acknowledgements:

We are most grateful to the captain and crew of RV Heincke for their excellent support on shipboard, to the Deutsche Forschungsgemeinschaft for financial support and to the responsible authorities of Denmark and Norway for giving us the permission to do research in the economic zones of their countries.

Participants	Affiliation	Affiliation
Brinkhoff, Thorsten	ICBM	University of Oldenburg
Dammrich, Thea	Student	University of Oldenburg
Gansel, Lars	ICBM	University of Oldenburg
Kahlhöfer, Daniela	ICBM	University of Oldenburg
Kuerzel, Birgit	ICBM	University of Oldenburg
Lemke, Andreas	ICBM	University of Oldenburg
Poigner, Harald	Student	University of Oldenburg
Schlingloff, Andrea	ICBM	University of Oldenburg
Simon, Meinhard	ICBM	University of Oldenburg
Thole, Sebastian	ICBM	University of Oldenburg
Zielske, Alexander	Student	University of Oldenburg
Zimmer, Elke	Student	University of Oldenburg

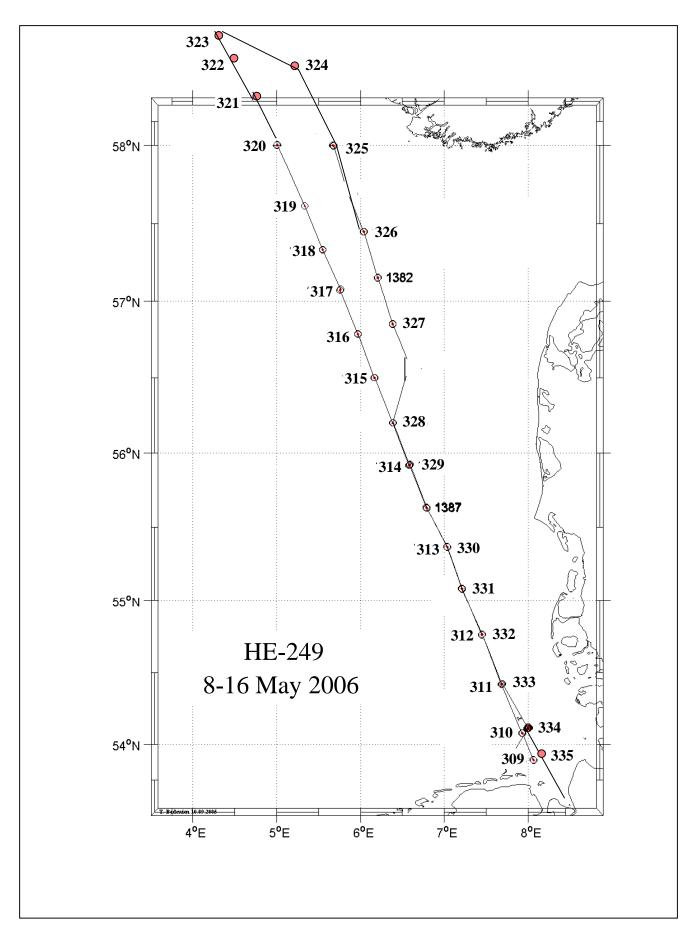


Fig. 1: Cruise track HE-238

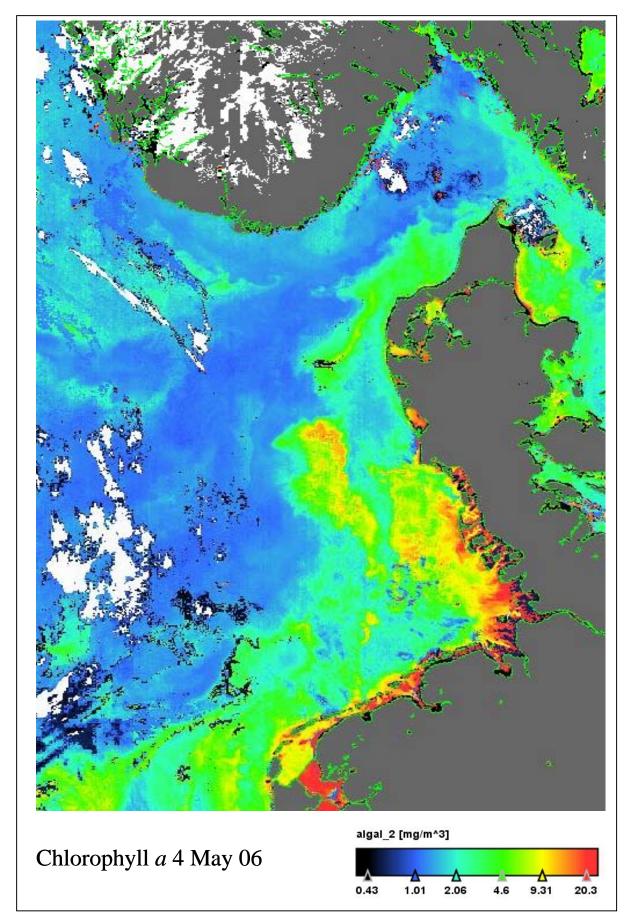
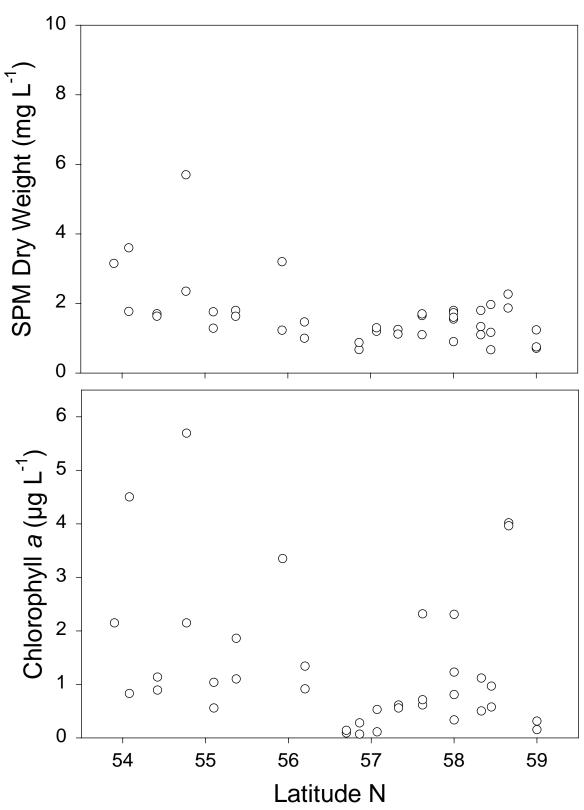



Fig. 2: Satellite image of chlorophyll distribution in the North Sea on 4 May 2006 (Courtesy of GKSS).

5

Heincke 249 North Sea

Fig. 3: Suspended particulate matter (SPM, upper panel) and chlorophyll *a* (lower panel) on the cruise track during cruise HE-249. Given are values of the mixed layer (0 m to 20 m depth).

Cruise Heincke-249, 8.- 16. May 2006

Station overview

Station	Date	Time	Position		Temp 0 m	Secchi	Depth (max)
		(UTC)	Ν	\mathbf{E}	(°C)	(m)	(m)
309	08.05.	11:30	53° 53.736'	08° 04.050'	10.6	nd	12
310	08.05.	14:06	54° 04.946'	07° 56.069'	9.2	nd	32.5
311	09.05.	06:20	54° 25.328'	07° 40.980'	8.4	6.8	22
312	09.05.	09:43	54° 45.879'	07° 26.778'	8.3	6.5	20
313	09.05.	14:15	55° 22.049'	07° 02.049'	(?) 12.9	6.0	26
314	10.05.	05:45	55° 54.949'	06° 34.832'	9.1	3.0	37
315	10.05.	10:45	56° 29.942'	06° 10.105'	9.1	20.9	34
316	10.05.	13:21	56° 41.907'	05° 58.039'	9.7	20.5	52
317	10.05.	16:30	57° 04.114'	05° 45.048'	9.4	26.0	44.6
318	11.05.	06:15	57° 19.952'	05° 33.090'	8.2	15.0	71
319	11.05.	08:20	57° 37.078'	05° 20.060'	9.0	14.0	86
320	11.05.	11:45	58° 00.227'	05° 00.225'	9.1	9.0	127
321	11.05.	15:49	58° 20.056'	04° 43.005'	8.8	13.0	292
322	12.05.	05:45	58° 39.977'	04° 26.038'	8.9	15.0	260
323	12.05.	09:48	58° 59.715'	04° 09.911'	8.7	17.5	287
234	12.05.	16:40	58° 26.974'	05° 15.196'	9.5	9.0	309 *
325	13.05.	05:49	57° 59.968'	05° 39.930'	9.3	10.0	258 *
326	13.05.	12:30	57° 37.038'	06° 02.509'	9.4	13.0	84
327	13.05.	17:00	56° 51.273'	06° 23.149'	8.6	15.0	48
328	14.05.	05:45	56° 12.011'	06° 23.094'	9.0	7.0	40
329	14.05.	07:55	55°55.488'	06° 35.449'	9.5	4.5	37
330	14.05.	12:15	55° 22.147'	07° 01.951'	9.8	3.5	27
331	14.05.	14:42	55° 06.111'	07° 11.945'	11.2	5.5	25
332	14.05.	17:25	54° 46.285'	07° 27.147'	11.6	5.0	19
333	15.05.	05:45	54° 25.409'	07° 40.980'	11.8	6.5	20
334	15.05.	8:20	54° 04.865'	07° 56.066'	10.6	3.0	33
335	15.05.	10:10	53° 53.874'	08° 03.156'	9.0	5.0	14

* Extreme salinity gradient 0-10 m: 27.5->34‰

Station	Date	Sampling dep	ths (m)	Net tow Phytoplankton	Net tow Zooplankton		
		Water column	Sediment				
309	08.05.	1, 10	-	Diatoms, diverse, dominance of Rhizosolenia, break down of a bloom	Copepods		
310	08.05.	1, 10, 20	+	Diatoms, Rhizosolenia, break down of a bloom	Copepods		
311	09.05.	8, 18	-	Diatoms, Rhizosolenia, break down of a bloom	Cladocerans (Evadne) and Cope- pods		
312	09.05.	8, 18	+	fewer diatoms, Rhizosolenia dominate	Copepods		
313	09.05.	4, 12, 22	+	fewer diatoms, Rhizosolenia dominate	Copepods		
314	10.05.	2, 8, 20	+	Diatoms (Coscinodiscus wailesii), Ceratium spp., rather diverse	Nauplii		
315	10.05.	5, 15, 30	+	Diatoms (Coscinodiscus granii, few Rhizosolenia), diverse Ceratium	Adult copepods and Nauplii		
316	10.05.	5, 20, 35	-	Diatoms (Coscinodiscus granii), diverse Ceratium	Adult copepods and Nauplii, tini gellyfish (?)		
317	10.05.	5, 15, 35	-	Diatoms (Coscinodiscus granii, Rhizosolenia), diverse Ceratium, Protoperidinium, Phaeocystis	many Echinoidea-Pluteuslarvae, Calanoidea, Chaetognatha, few Euphausid larvae		
318	11.05.	5, 15, 35	-	Phaeocystis, Leptocylindrus, Rhizosolenia, Ceratium spp., Protoperidinium, Halosphaera	Diverse Copepods, Chaetognaths, many Oikopleura		
319	11.05.	10, 37, 55	+	Phaeocystis, Leptocylindrus, Rhizosolenia, Chaetoceros, Ceratium spp., Protoperidinium, Dinophysis, Halosphaera	Diverse Copepods, Echinoidea- Pluteuslarvae,, many Fritillaria		

Station	Date	Sampling dep (m)	ths	Net tow Phytoplankton	Net tow Zooplankton		
		Water column	Sediment		-		
320	11.05.	10, 20, 30, 45, 80	+	Spring bloom: Phaeocystis, Leptocylindrus, Rhizosolenia, Chaetoceros, Ceratium spp., Protoperidinium, Halosphaera	few Copepods, Oikopleura, Fritil- laria		
321	11.05.	10, 20, 30, 60, 90	-	Spring bloom: Phaeocystis, Leptocylindrus, Rhizosolenia spp., Viele Ceratium spp., Protoperidinium,, Dinophysis	Diverse Copepods, Oikopleura		
322	12.05.	10, 20, 30, 50, 100	+	Spring bloom: Phaeocystis, diverse Diatomeen (Leptocylindrus, Rhizosolenia spp., Chaetoceros spp.,, Pseudonitzschia pungens, Guinardia flaccida, few Ceratium spp., Protoperidinium,, Dinophysis	Diverse Copepods, Oikopleura, Fritillaria, Cirriped larvae, Chaetognaths, Ctenophors, Radiolarians, few Echinoidea- Larvae		
323	12.05.	10, 20, 30, 50, 100	+	few Phytoplankton, Phaeocystis, Ceratium spp., Protoperidinium, Dinophysis, Leptocylindrus	Diverse Copepods, Oikopleura, many Medusae, Ctenophors, Larvae of: Echinoidea, Bryozoans, Polychaets, Cirripeds,		
324	12.05.	5, 10, 20, 30, 50, 100	+	few Phytoplankton, Ceratium spp., no Diatoms	many Copepods, Cirriped larvae, Appendicularians, Echinoidea- Larvae, Medusae,		
325	13.05.	5, 15, 30, 50, 100	+	few Phytoplankton, Ceratium spp., no Diatoms	many Copepods, Cirriped larvae, Oikopleura, Chaetognaths, Echin- oidea-Larvae, Medusae, gastropod larvae		
326	13.05.	10, 35, 60	-	Phaeocystis, Ceratium spp., Proto- peridinium,Dinophysis, Leptocy- lindrus, Chaetoceros, Rhizosolenia, Guinardia flaccida	many Copepods, Oikopleura, Chae- tognaths, Echinoidea-Larvae,		
327	13-05.	15, 30	-	Ceratium spp., very few Diatoms	few Copepods, many Echinoidea- Larvae, Chaetognats		

Station	Date	Sampling of (m)	lepths	Net tow Phytoplankton	Net tow Zooplankton		
		Water column	Sediment		-		
328	14.05.	5, 15	-	Coscinodiscus granii+wailesii, Chaetoceros spp., Silicoflagellat (Dictyocha speculum), Ceratium tripos, Dynophysis	Quite a few Copepods, Cladocerans (Evade normanii)		
329	14.05.	10, 25	-	Coscinodiscus wailesii, Chaeto- ceros spp., Guinardia flaccida, Ce- ratium spp., Dynophysis	many Echinoderm-Bippinaria- Larvae, (Echinoidea, starfish), few Copepods		
330	14.05.	5, 20	-	Coscinodiscus wailesii, Guinardia flaccida, Brockmanniella, Rhizosolenia, Ceratium horridum,	Copepods, Cladocerans (Evadne), few Echinoidea larvae		
331	14.05.	5, 15	-	Coscinodiscus wailesii, Ceratium horridum, fusus	Copepods, Cladocerans (Evadne), many Ctenophors, Bipinnaria larvae,		
332	14.05.	0, 15, 25	_	Diverse diatoms (Coscinodiscus wailesii, Rhizosolenia spp., Chae- toceros spp., Guinardia flaccida, Thalassiosira rotula, Ditylum brightwelli	Copepods, few Cladocerans, Bipin- naria larvae, Echinoidea-larvae, Polychaet larvae, many Ctenophors		
333	15.05.	0, 10	_	Very diverse diatoms (Coscinodis- cus wailesii, Rhizosolenia spp., Chaetoceros spp., Guinardia flacci- da, Ditylum brightwelli, Thalassio- nema nitzschioides, Asterionel- lopsis glacialis	Copepods, Echinoderm larvae, Cte- nophors		
334	15.05.	5, 20	-	dense spring bloom, very diverse diatoms, all species typical for the North Sea present.	few Copepods and Polychaet larvae		
335	15.05.	5	-	dense spring bloom, very diverse diatoms, all species typical for the North Sea present.	Wenige Copepoden und Polychae- tenlarven		

Parameter overview water column

Station	Date	SPM	Chl	C/N	DNA	FISH	BP/AA/ Glc	MAR- FISH	Bact	Phyto	DOC	DAA/ DCHO	
309	08.05.	+	+	+	+	+	+	+	+	+	+	+	
310	08.05.	+	+	+	+	+	+	+	+	+	+	+	
311	09.05.	+	+	+	+	+	+	-	+	+	+	+	
312	09.05.	+	+	+	+	+	+	-	+	+	+	+	
313	09.05.	+	+	+	+	+	+	+	+	+	+	+	
314	10.05.	+	+	+	+	+	+	+	+	+	+	+	
315	10.05.	+	+	+	+	+	+	+	+	+	+	+	
316	10.05.	+	+	+	+	+	+	+	+	+	+	+	
317	10.05.	+	+	+	+	+	+	-	+	+	+	+	
318	11.05.	+	+	+	-	-	-	-	+	-	-	-	
319	11.05.	+	+	+	+	+	+	-	+	-	-	-	
320	11.05.	+	+	+	+	+	+	+	+	+	+	+	
321	11.05.	+	+	+	+	+	+	-	+	+-	+	-	
322	12.05.	+	+	+	+	+	+	+	+	+	+	+	
323	12.05.	+	+	+	+	+	+	+	+	+	+	+	
324	12.05.	+	+	+	+	+	+	+	+	+	+	+	
325	13.05.	+	+	+	+	+	+	+	+	+	+	+	
326	13.05.	+	+	+	+	+	+	+	+	+	+	+	
327	13.05.	+	+	+	+	+	+	+	+	+	+	+	
328	14.05.	+	+	+	+	+	+	+	+	-	+	+	
329	14.05.	+	+	+	+	+	+	+	+	+	+	+	
330	14.05.	+	+	+	+	+	+	+	+	+	+	+	
331	14.05.	+	+	+	-	-	-	-	+	+	+	+	
332	14.05.	+	+	+	+	+	+	+	+	+	+	+	
333	15.05.	+	+	+	+	+	+	+	+	+	+	+	
334	15.05.	+	+	+	+	+	+	+	+	+	+	+	
335	15.05	+	+	+	+	+	+	+	+	+	+	+	

Parameter overview sediment

Station	Date	POC	FISH	DNA	Bacteria	
310	08.05.	+	+	+	+	
312	09.05.	+	+	+	+	
314	10.05.	+	+	+	+	
315	10.05.	+	+	+	+	
319	11.05.	+	+	+	+	
320	11.05.	+	+	+	+	
322	12.05.	+	+	+	+	
323	12.05.	+	+	+	+	
324	12.05.	+	+	+	+	

	HE 249
	FOR COLLATIMG CENTRE USE
CRUISE SUMMARY REPORT	Centre: DOD Ref. No.:
	Is data exchange
	restricted Yes In part
	No
SHIP enter the full name and international radio call sign of the ship from which the data were c example, research ship; ship of opportunity, naval survey vessel; etc.	ollected, and indicate the type of ship, for
Name: Heincke	Call Sign: HE
Type of ship: Research Vessel	
CRUISE NO. / NAME HE-249	enter the unique number, name or acronym assigned to the cruise (or cruise leg, if appropriate).
CRUISE PERIOD start (set sail) $\frac{08/05/2006}{day/ month/ year}$ to $\frac{16/05/2006}{day/ month/ year}$ end	d turn to port)
PORT OF DEPARTURE (enter name and country) Bremerhaven, Germany	
PORT OF RETURN (enter name and country) Bremerhaven, Germany	
	sponsible for coodinating the scientific planning
of the cruise	
Name: ICBM, University of Oldenburg	
Address: POBox 2503, D-26111 Oldenburg	
Country: Germany	
CHIEF SCIENTIST(S) enter name and laboratory of the person(s) in charge of the s	scientific work (chief of mission) during the cruise.
Dr. Meinhard Simon, ICBM, University of Oldenburg	
the cruise so	nt information about the purpose and nature of
as to provide the context in To study bacterioplankton dynamics in the the North Sea	which the report data were collected.
PROJECT (IF APPLICABLE) if the cruise is designated as part of a larger scale of name of the project, and of organisation responsible for co-ordinating the project.	cooperative project (or expedition), then enter the
Project name:	
Coordinating body:	

PRINCIPAL INVESTIGATORS: Enter the name and address of the Principal Investigators responsible for the data collected on the cruise and who may be contacted for further information about the data. (The letter assigned below against each Principal Investigator is used on pages 2 and 3, under the column heading 'PI', to identify the data sets for which he/she is responsible)

Dr. Meinhard Simon

MOORINGS, BOTTOM MOUNTED GEAR AND DRIFTING SYSTEMS

This section should be used for reporting moorings, bottom mounted gear and drifting systems (both surface and deep) deployed and/or recovered during the cruise. Separate entries should be made for each location (only deployment positions need be given for drifting systems). This section may also be used to report data collected at fixed locations which are returned to routinely in order to construct 'long time series'.

	APPROXIMATE POSITION						DATA	DESCRIPTION		
PI			=	10	ONGITUE		TYPE	Identify, as appropriate, the nature of the instrumentation the parameters (to be) mea ured, the number of instruments and their depths, whether deployed and/or recovere dates of deployments and/or recovery, and any identifiers given to the site.		
See						enter	dates of deployments and/or recovery, and any identifiers given to the site.			
top of page.	deg	min	N/S	deg	min	E/W	code(s) from list on			
page.							cover			
							page.			
		1								
		ē								
					9 					
			9							
			1							
								Please continue on separate sheet if necessary		
			1					r lease continue on separate sheet il necessaly		

SUMMARY OF MEASUREMENTS AND SAMPLES TAKEN

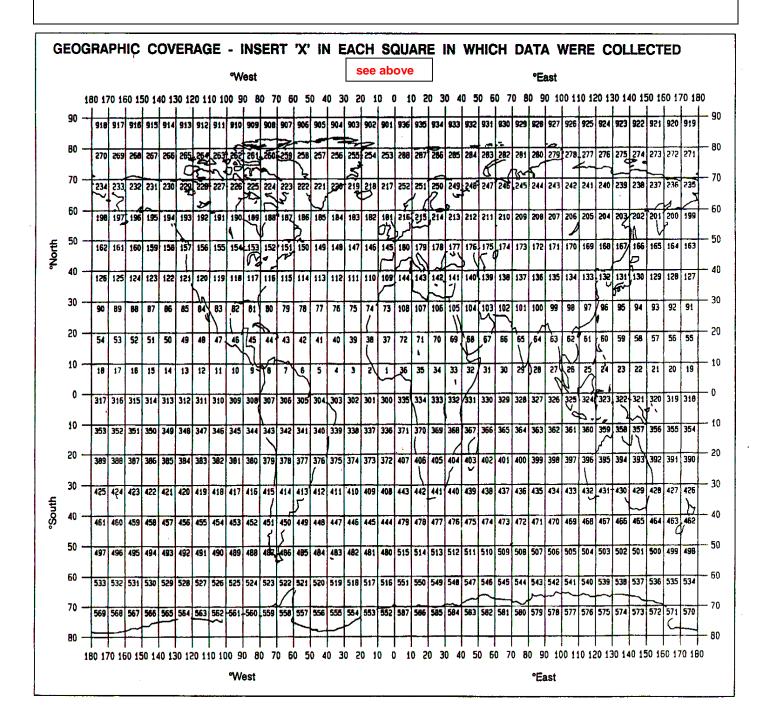
Except for the data already described on page 2 under 'Moorings, Bottom Mounted Gear and Drifting Systems', this section should include a summary of all data collected on the cruise, whether they be measurements (e.g. temperature, salinity values) or samples (e.g. cores, net hauls).

Separate entries should be made for each distinct and coherent set of measurements or samples. Different modes of data collection (e.g. vertical profiles as opposed to underway measurements) should be clearly distinguished, as should measurements/sampling techniques that imply distinctly different accuracy's or spatial/temporal resolutions. Thus, for example, separate entries would be created for i) BT drops, ii) water bottle stations, iii) CTD casts, iv) towed CTD, v) towed undulating CTD profiler, vi) surface water intake measurements, etc.

Each data set entry should start on a new line - it's description may extend over several lines if necessary.

NO, UNITS : for each data set, enter the estimated amount of data collected expressed in terms of the number of 'stations'; miles' of track; 'days' of recording; 'cores' taken; net 'hauls'; balloon 'ascents'; or whatever unit is most appropriate to the data. The amount should be entered under 'NO' and the counting unit should be identified in plain text under 'UNITS'.

	NC			DESCRIPTION
PI	NO	UNITS	DATA TYPE	Identify, as appropriate, the nature of the data and of the instrumentation/sampling gear and list the parameters measured. Include any supplementary information that may be appropriate, e.g. vertical or horizontal profiles, depth
see page 2	see above	see above	Enter code(s) from list on cover page	horizons, continuous recording or discrete samples, etc. For samples taken for later analysis on shore, an indication should be given of the type of analysis planned, i.e. the purpose for which the samples were taken.
A	57	station	H09	see attached Table and map
A	57	station	H10	see attached Table and map
Α	36	station	B02	see attached Table and map
A	37	station	B71	see attached Table and map
Α	28	station	B06	see attached Table and map
Α	27	station	B72	see attached Table and map
Α	37	station	B03	see attached Table and map
Α	32	station	B07	see attached Table and map
A	12	station	B16	see attached Table and map
В	28	station	H30	see attached Table and map
в	28	station	H24	see attached Table and map
В	28	station	H26	see attached Table and map
Α	28	station	B08	see attached Table and map
Α	28	station	B09	see attached Table and map
Ī				
ľ				
ľ				
1				Please continue on separate sheet if necessary
				· · · · · · · · · · · · · · · · · · ·


TRACK CHART: You are strongly encouraged to submit, with the completed report, an annotated track chart illustrating the route followed and the points where measurements were taken.	Insert a tick(✓) in this box if a track chart is sup- plied	
---	---	--

GENERAL OCEAN AREA(S): Enter the names of the oceans and/or seas in which data were collected during the cruise – please use commonly recognised names (see, for example, International Hydrographic Bureau Special Publication No. 23, 'Limits of Oceans and Seas').

North Sea

SPECIFIC AREAS: If the cruise activities were concentrated in a specific area(s) of an ocean or sea, then enter a description of the area(s). Such descriptions may include references to local geographic areas, to sea floor features, or to geographic coordinates. <u>Please insert here the number of each square in which data were collected from the below given chart</u>

215

