Zentrum für Marine und
Atmosphärische Wissenschaften Institut für Meereskunde

Cruise Report LANCE 18/2005

Ship:
Cruise: LA1805
Dates:

Port Calls:

Scientific crew: 8
Chief Scientist: John Mortensen
Principal Project:

Research area:

Working Time Zone:
Master:

Institute: ZMAW, Institut für Meereskunde, Universität Hamburg
RV LANCE

September $19^{\text {th }}-$ October $11^{\text {th }} 2005$
Tromsø/Norway

SFB 512 E2 (The East Greenland Current, an indicator of the low frequency variability of the outflow of the system Arctic Ocean/Nordic Seas)

Nordic Seas

UTC
Frits R. Johansen

Participants:

Name	Speciality	Institute
Mortensen, John, Dr.	Chief Scientist	IfM HH
Fossan, Kristen	CTD/Mooring	NPI
Latarius, Katrin	CTD	IfM HH
Majer, Claudia	CTD	IfM HH
Rolle, Kirstin	CTD	IfM HH
Schütze, Mattis	CTD	IfM HH
Verch, Norbert	CTD	IfM HH
Welsch, Andreas	Mooring	IfM HH

IfM HH

ZMAW, Institut für Meereskunde, Universität Hamburg, Bundesstr. 53, D-20146 Hamburg, Germany, e-mail: meincke@ifm.uni-hamburg.de, mortense@ifm.uni-hamburg.de

NPI

Norsk Polarinstitut, Polarmiljøsenteret, N-9296 Tromsø, Norway, Email: mikelborg@npolar.no

Scientific Objectives

The RV LANCE 18/2005 cruise (The East Greenland Current, an indicator of the low frequency variability of the outflow of the system Arctic Ocean/Nordic Seas) was conducted by the ZMAW, Institut für Meereskunde, Universität Hamburg, with the main objective of collecting hydrographic observations on the East Greenland continental shelf and slope in the Greenland Sea as part of the German project SFB 512, E2. The main goal of SFB 512, E2, is to understand how changes in the outflows of the Arctic Ocean/Nordic Seas system correlate with measured changes in the East Greenland Current. The LANCE 18/2005 cruise had the following aims:

1. to carry out hydrographic investigations along the $74^{\circ} \mathrm{N}$ latitude on the East Greenland continental shelf and slope and along sections in the Greenland Sea and adjacent Seas.
2. to service two tube moorings (in Tube18 and Tube19; out Tube22 and Tube23) and an ADCP (Acoustic Doppler Current Profiler) mooring on the East Greenland shelf.
3. to service two deep sea moorings (HH3-04 and $\mathrm{HH} 5-04$).
4. to collect underway ship-borne ADCP data $(150 \mathrm{kHz})$ along hydrographic transects.
5. to deploy 9 APEX-floats at four different sites in the Nordic Seas.

Narrative of the cruise

The scientific party from Germany arrived according to schedule at Tromsø, Norway, in the afternoon of Sunday September $18^{\text {th }} 2005$. The scientific equipment was loaded onto RV Lance, installed and made sea safe by early Monday evening, September $19^{\text {th }}$. RV Lance left the port of Tromsø Monday evening, September $19^{\text {th }}$ at 1830 UTC (2030 hours local time). With an unfavourable weather forecast for the coast outside Tromsø, it was decided to steam with reduced speed during the night in the shelter of the estuary and await the passage of the low-pressure system.

Tuesday morning September $20^{\text {th }}$ the low-pressure system had still to pass the area. Based on weather forecasts and reports from other ships to the south it was decided to leave the coast and seek shelter in the estuary and follow the development closely. By Tuesday evening weather had improved so much that course was set for the coast and the first of four planned APEX float deployment sites in the Nordic Seas near to $75^{\circ} \mathrm{N}$ and $0^{\circ} \mathrm{W}$ in the centre of the Greenland Sea. During Wednesday and Thursday RV Lance fought its way through heavy seas and strong winds with conditions only improving slowly. Before arriving at the first APEX float-deploying site in the Greenland Sea the next low-pressure system with a strong gale warning was approaching with alarming speed. The first APEX float was deployed Friday morning at 0614 UTC at $75^{\circ} \mathrm{N}$ and $0^{\circ} \mathrm{W}$. A few hours later the third and last float for this site went into the water at 1023 UTC and course was now set for the ice and the inner CTD station of the $74^{\circ} \mathrm{N}$ section close to Greenland.

CTD winch. Photo: N. Verch.
In the late hours of Friday and early hours of Saturday September $24^{\text {th }}$ wind increased to a gale. Later Saturday wind increased further into a strong gale with mean wind flipping around 25 m / s. During the steam towards East Greenland the pack ice was met at $11^{\circ} \mathrm{W}$. A lower ice concentration was observed between $16^{\circ} \mathrm{W}$ and the compact pack ice belt near the coast. In the
afternoon of Saturday, September $24^{\text {th }}$ RV Lance settled down in the fast moving ice near the coast of East Greenland; southward ice drift velocities of 2 knots were observed. During the night between Saturday and Sunday swells had grown to a size which made it dangerous for the ship to stay in the ice and the ship was forced into more open waters. Sunday September $25^{\text {th }}$ was used to steam towards the first CTD station on the $74^{\circ} \mathrm{N}$ section and for letting the elements calm down. During the steam a tube mooring was made ready for deployment. When arriving the $74^{\circ} \mathrm{N}$ latitude it became clear that the planned CTD stations nearest to Greenland were covered with very compact pack ice. Entering the pack ice was still out of question due to high swells. The ship now went into a waiting position using some time to test the CTD and polish the routines connected to a CTD cast.

Monday morning, September $26^{\text {th }}$ at 0600 UTC, course was set into the pack ice towards Greenland and the first CTD station on the $74^{\circ} \mathrm{N}$ section. Progress was slow, as the pack ice was very compact after a longer period of strong northerly winds. Avoiding wasting too much time in navigating in the compact pack ice, the first and most westerly CTD station of the $74^{\circ} \mathrm{N}$ section was occupied at $19^{\circ} \mathrm{W}$ at 0731 UTC. The occupation of the $74^{\circ} \mathrm{N}$ section now continued eastward without any major problems except the path being filled with ice in changing concentration. In the afternoon Tube 22 was successfully deployed in an open lead at the 200 m isobath near $18^{\circ} \mathrm{W}$. The work along the $74^{\circ} \mathrm{N}$ section was first stopped in the early hours of Tuesday morning September $27^{\text {th }}$ at 0438 UTC where course was set for the ADCP-04 mooring. Tuesday would be devoted to mooring work even though the weather forecast predicted the arrival of the next lowpressure system.

The ADCP-04 mooring was hooked up in the first dredging attempt and the ADCP was brought safely onboard at 0942 UTC Tuesday morning, September $27^{\text {th }}$ 2005. A subsequent search for Tube 18 went on in the period 1015 UTC to 1125 UTC with no sign of the Tube mooring. Due to the approaching low pressure a dredging attempt was postponed, taking place some days later. Course was now set for Tube 19, which was successfully recovered at 1313 UTC and its replacement Tube 23 was safe in the water at 1514 UTC. Wind had now reached gale force. The sea state was still acceptable for mooring work, therefore course was set for the first deep mooring HH5-04. Recovery work on mooring HH5-04 started at 1636 UTC. When listening for the releaser, there was no sign of it. However, release order was given and the first floatation was observed breaking the surface a few minutes later. Only with minor problems was the mooring brought safely on deck at 1721 UTC. Course was now set for the last mooring to be recovered $\mathrm{HH} 3-04$. In the rapidly decreasing light and increasing waves release order was given at 1912 UTC. After over five minutes of tense waiting a group of floats was finally spotted. In strong wind and high waves the last instrument was finally brought on deck at 2029 UTC.

Wednesday September $28^{\text {th }}$ was spent in shelter of the ice, waiting for the wind and sea to calm down. The day was used to make equipment and instruments ready for redeployment in the coming days. Thursday morning, September $29^{\text {th }}$, the wind had dropped below $10 \mathrm{~m} / \mathrm{s}$ but heavy swells were still arriving from the east, making work difficult during the day. ADCP-05 was deployed at 0920 UTC. In the period 1032 UTC and 1123 UTC a search and one dredging attempt for Tube 18 was made without success. In the afternoon deep mooring HH5-05 was brought into the water with some problems. During a critical moment near the end of the last rope length to be deployed the rope was suddenly caught up in a block. The damage was so severe that the rope length had to be replaced by a new one. The anchor weight of deep mooring HH5-05 was released at 1655 UTC after nearly 2 hours of work. CTD work along the $74^{\circ} \mathrm{N}$ section was then resumed at 1857 UTC and continued to 0207 UTC the night between Thursday and Friday, when strong winds and heavy seas stopped all further work.

Friday September $30^{\text {th }}$ was again spent in shelter of the ice, waiting for the wind and sea to calm down. In the afternoon equipment and instruments were made ready for the deployment of the last deep mooring HH3-05 on one of the coming days. During the work on deck the temperature and wind speed were observed to be $-8.5^{\circ} \mathrm{C}$ and $14 \mathrm{~m} / \mathrm{s}$, respectively, the "equivalent temperature" was calculated to be $-27.5^{\circ} \mathrm{C}$.

Scientific crew. Photo: K. Rolle
Work was resumed Saturday noon October $1^{\text {st }}$ with the deployment of last deep mooring HH3-05 at 1238 UTC. CTD work along the $74^{\circ} \mathrm{N}$ section was resumed at 1349 UTC. With decreasing winds and falling seas CTD work ran relative smoothly during the last part of the day. The $74^{\circ} \mathrm{N}$ section was finished at 1955 UTC Sunday afternoon October $2^{\text {nd }}$. A CTD section towards Jan Mayen took over and CTD work progress along this line was finished at 0524 UTC Tuesday morning, October $4^{\text {th }}$. A disturbing factor during the CTD work was the never ending row of sizable swells stressing the sea cable to a high degree and seen as pressure spikes in the last 100 m of each CTD cast. After another passage of a low pressure system, CTD work was resumed at 0941 UTC Wednesday October $5^{\text {th }}$ along a section from Jan Mayen into the central parts of the Iceland Sea. Though swells were a disturbing factor in the beginning of the day, work continued and the section was finished at 0856 UTC Thursday morning October $6{ }^{\text {th }}$. APEX floats were deployed in connection with the occupation of the last two stations of the section. With an unfavourable weather forecast, it was decided to set course for Tromsø. During the transit to

Tromsø three APEX floats were deployed. After a rolling transit Tromsø was reached Monday morning October $10^{\text {th }}$ at 0715 CET.

CTD (SBE 911plus CTD system) Sensor Status

Sensor	Serial no.	Calibration date
Temperature	4022	31.Mar. 2004
Conductivity	2433	08.Apr. 2004
Pressure	86555	17.Jul. 2001

For the control of the temperature and pressure SIS GmbH digital reversing thermometers and pressure sensor, RTM4002X and RPM6000X were applied. Additionally a Benthos Altimeter Model PSA-916 was mounted on the rosette.

Preliminary Results

CTD (Conductivity, Temperature and Depth) profiles were obtained along three sections. The first section had end points near the coast of East Greenland and in the deeper part of the Greenland Sea Gyre, thus crossing the East Greenland Current. The second section went from the deeper part of the Greenland Sea to Jan Mayen crossing the Jan Mayen Polar Current. The third section went from Jan Mayen into the central parts of the Iceland Sea. For locations of sections and stations see Figure 1 and the list of stations below. Limited cruise time and especially weather made it impossible to fulfil all wishes concerning station occupation. The evaluation of the CTD data given below is based on a preliminary data set. Therefore, post-cruise calibration might result in some changes; especially the measured salinity seems to be some thousandth too low.

Potential temperature and salinity distribution along a composite transect made up by the three sections mentioned above are shown below in Figure 2. Over the East Greenland Shelf and the upper part of the continental slope we have the East Greenland Current. To the south near Jan Mayen a low saline surface layer indicates the presence of the Jan Mayen Polar Current. To the south of Jan Mayen warm and saline surface water is brought into the Iceland Sea by a current which we tentatively will refer to as the Jan Mayen Atlantic Current.

Figure 3 shows schematically the different water masses transported by the East Greenland Current and the Greenland Sea Gyre. Water masses which have Greenland Sea in their definition name are formed in and participate mainly in the internal circulation of the Greenland Sea Gyre. The remaining water masses are of Polar, Atlantic and even Pacific origin. The exchange taking place between these two domains is not yet understood. The water masses have in some detail been discussed by e.g. Rudels et al. (2002) and in the Cruise Report Lance $15 / 2004$. It should be pointed out here that Polar Water (PW) is made up of several distinct water masses of either Pacific or Atlantic origin (e.g. Falck et al., 2005).

The recent near surface changes which have taken place along the $74^{\circ} \mathrm{N}$ section are illustrated in Figure 4, 5 and 6. 2005 is characterized by record high surface salinities over both the shelf and deeper parts of the section. The same tendency is observed in the intermediate water mass, Re-circulating Atlantic Water (RAW), where salinity values over 35.05 were observed in 2005. High salinity values in the RAW have been observed earlier e.g. during a joint DanishIcelandic Greenland Sea Project cruise in September 1991 (Malmberg et al., 1996). Figure 6
shows that the amount of saline RAW has increased considerably during the period 2002 to 2005 and that the increase is not only limited to the East Greenland Current is seen in Figure 2. Thus we observe that a significant amount of warm and saline RAW has entered the Greenland Sea Gyre between September 2004 and September 2005. A similar transport of PW into the interior of the Greenland Sea Gyre in the upper layer was not observed.

The volumetric changes which have taken place in the PW domain $(\mathrm{S}<34.5)$ are shown in Figure 5. Unfortunately, no nutrient measurements were obtained during the cruises. We therefore lack the relationship between nitrate and phosphate to distinguish between water of Pacific and Atlantic origin. Below, we try to use the fact that PW of Pacific origin has low salinities which lie in the range 32.0-33.1 and PW of Atlantic origin is observed in the opposite end of the range $34.0-34.4$. From Figure 5 we get the impression that Pacific Water was present in 2002 and 2005 and with hardly any signal in 2004. That there were low amounts of Pacific Water in 2004 was also reported by Falck et al. (2005) from the northwestern Fram Strait. In 2002 the observed Pacific Water was relatively fresh whereas in 2005 it was more saline (as also observed in 2003 but not showed). The Pacific Water observed in 2005 with salinity of ~ 33.1 is likely Upper Halocline Water (UHW e.g. Steele and Boyd 1998, Falck et al., 2005). It is also believed that the water observed in 2002 was UHW. PW of Atlantic origin was very distinct in 2002 and 2004 with highest salinity observed in 2002 . These waters fall into the category usually referred to as Lower Halocline Water (e.g. Steele and Boyd 1998); the high salinities observed in 2002 even point towards the source area as the Nansen Basin. In 2005 the low salinities suggest that the source area has changed toward the Amundsen Basin or even further. On the distribution of LHW or more precise convective LHW in the eastern Arctic Ocean see e.g. Kikuchi et al. (2004).

We can state here that the Pacific Water has likely reappeared in 2005 on the East Greenland shelf after a short disappearance in 2004.

Results from the just recovered Tube 19 are shown in Figure 7 and 8. Figure 7 shows TSdiagrams showing the property changes experienced by the upper instrument of Tube 19 in the depth range 12 m to 30 m (based on a preliminary data set). The undisturbed measuring depth was app. 12 m and knockdown or excursion to greater depths can mainly be related to increase in currents. Some statistics are given in Table 1 and 2. At the time of the deployment of Tube 19 winter cooling had not started and temperatures up to $3^{\circ} \mathrm{C}$ were observed as late as October. First evidence of winter cooling was first observed in the end of October.

We believe that the increase in salinity along the freezing point curve is caused by the new ice formation, though changes related to frontal movements cannot be ruled out. Obvious horizontal/frontal movements were observed as increases in both the temperature and salinity at the same time as observed in November, December 2004 and January 2005 (Figure 7). At the same time the number of observations with depth greater than 30 m were observed to increase (Table 1).

In the period February to April 2005 we observed very small property changes although not as small as those observed in 2004. The water mass present in this period is the coldest version of LHW mentioned above but with salinities not as high as those observed in 2004, again suggesting that the source of cLHW have changed between 2004 and 2005. The beginning of the summer heating season was first observed at the end of May when temperatures started to leave near freezing conditions. Maximum temperature was found in September $2005\left(3.11^{\circ} \mathrm{C}\right)$.

Table 1 shows the percentage of excursion to depths greater than 30 m . Low percentage was observed in October 2004 and June 2005 and significantly higher values were found from November 2004 to February 2005. Table 2 shows that for the deployment period of Tube 19 positive temperatures were found in 6 out of 13 months.

In Table 3 we show that there is a general increase in the percentage of observations observed in depths greater than 30 m over the years. Whether this reflects a general increase of the mean current or an eventual decrease in buoyancy of the flotation still remains to be checked against the ADCP measurements made during three periods (Sep01-Sep02, Oct03-Sep04 and Sep04-Sep05). Related to this issue are the findings of Table 4, which shows a decrease of the numbers of positive temperature observations to 2004 for then showing an increase in 2005.

Figure 8 shows the longest continuous time series existing from the near surface PW on the East Greenland Shelf. Both the upper and lower instrument reveal a seasonal signal in both temperature and salinity. With the Tube positioned near the East Greenland continental break the water we are most likely observing is LHW of some type. With the inclusion of the data from Tube 19 in the time series we observe that the properties of the LHW are changing towards a fresher type, likely meaning a source area shift already mentioned above.

With the successful recovery rate of moorings and data retrieval in 2005 (see Table 5) we are now able to present velocity observations from the East Greenland Current at $74^{\circ} \mathrm{N}$. Annual mean northward velocity for a composite of instruments are shown in Figure 9, overlaid with the salinity distribution along the $74^{\circ} \mathrm{N}$ section in 2005. Note that observations are from three different years. At first glance the velocity observations presented here seem very similar to those found at $75^{\circ} \mathrm{N}$ by Woodgate et al. (1999). At the shelf break our ADCP-03 reveals higher velocities than those presented by Woodgate et al. (1999), and our values from the interior of the Greenland Sea are somewhat lower.

When going through the pressure records of the two deep moorings it became apparent that the moored instruments experienced a lot of knockdowns by currents. During one occasion the upper instrument on mooring HH3-04 experienced a downward excursion of around 400 m (Figure 10). At the same time current speeds increased to around $72 \mathrm{~cm} / \mathrm{s}$. A stick plot for daily filtered current data for the same period, Figure 11, shows no clear sign of eddy activity during the knockdown. Contrary to this, at the mooring HH1-01 outside the swift East Greenland Current knockdowns of instruments are associated with the passage of eddies.

For the upper RCM on HH3-04 we note that in ca. 16% of the deployment time there was knockdown to depths greater than 90 m . During the knockdown northward average velocity was found to be $-28 \mathrm{~cm} / \mathrm{s}$. Therefore the velocities shown in Figure 9 give an underestimate and the real velocity can easily be 25% higher or even more.

Table 1. Percentage of depth observations greater than $30 \mathrm{dbar}(\sim \mathrm{m})$ observed in a month by the upper instrument in Tube 19 (September $25^{\text {th }} 2004$ to September $27^{\text {th }} 2005$).

Sep04	Oct04	Nov04	Dec04	Jan05	Feb05	Mar05
0.00	9.01	58.56	42.05	72.38	44.17	22.74
Apr05	May05	Jun05	Jul05	Aug05	Sep05	
16.64	37.50	0.39	21.33	12.75	36.99	

Table 2. Percentage of temperature observations greater than $0^{\circ} \mathrm{C}$ in the depth range 12 m to 30 m observed in a month by the upper instrument in Tube 19 (September $25^{\text {th }} 2004$ to September $27^{\text {th }}$ 2005).

Sep04	Oct04	Nov04	Jun05	Aug05	Sep05
77.7	36.0	0.2	0.7	22.0	2.9

Table 3. Percentage of depth observations greater than 30 dbar observed by the upper instrument during four different Tube deployments (deployments and recoveries usually took place in late September) in the same location.

Tube 6	$2001 / 2002$	8.50%
Tube 9	$2002 / 2003$	12.86%
Tube14	$2003 / 2004$	25.20%
Tube19	$2004 / 2005$	28.97%

Table 4. Percentage (or hours) of temperature observations greater than $0^{\circ} \mathrm{C}$ in water shallower than 30 dbar observed by the upper instrument during four different Tube deployments (deployments and recoveries usually took place in late September) in the same location.

Tube 6	$2001 / 2002$	7.89%	647 hours
Tube 9	$2002 / 2003$	6.24%	493 hours
Tube 14	$2003 / 2004$	6.64%	424 hours
Tube 19	$2004 / 2005$	8.04%	503 hours

References

Falck, E., G. Kattner and G. Budéus, Disappearance of Pacific Water in the northwestern Fram Strait, Geophys. Res. Lett., 32, doi:10.1029/2005GL023400, 2005.

Kikuchi, T., K. Hatakeyama and J.H. Morison, Distribution of convective Lower Halocline Water in the eastern Arctic Ocean, J. Geophys. Res., 109, doi: 10.1029/2003JC002223, 2004

Malmberg, S.A., H. Valdimarsson, and J. Mortensen, Long-time series in Icelandic waters in relation to physical variability in the northern North Atlantic, NAFO Sci. Coun. Studies, 24, 6980, 1996.

Rudels. B., E. Fahrbach, J. Meincke, G. Budéus and P. Eriksson, The East Greenland Current and its contribution to the Denmark Strait overflow, ICES J. Mar. Sci., 59, 1133-1154, 2002.

Steele, M. and T. Boyd, Retreat of the cold halocline layer in the Arctic Ocean, J. Geophys. Res., 103(C5), 10.419-10435, 1998.

Woodgate, R.A., E. Fahrbach and G. Rohardt, Structure and transports of the East Greenland Current at $75^{\circ} \mathrm{N}$ from moored Current meters, J. Geophys. Res., 104(C8), 18.059-18.072, 1999.

Further Remarks

We would like to thank Captain Johansen and his crew of RV Lance for good seamanship and cooperation during the LA1805 cruise. Sincere thanks go to the authorities of Greenland/Denmark, Iceland and Norway for research permissions. We also send our regards to the persons at the Greenland Commando. Financial support came from the Deutsche Forschungsgemeinschaft (SFB 512), Bonn.

Table 5. Mooring recoveries during Lance 18/2005

Mooring	Latitude Longitude	Water depth (m)	Date and time of first record	Instrument Type	Serial Number	Instr. Depth Nom. (m)	Record Length (days)
ADCP	$\begin{aligned} & 74^{\circ} 02.645 \mathrm{~N} \\ & 15^{\circ} 38.127 \mathrm{~W} \\ & \hline \end{aligned}$	202	25.09.04	$\begin{gathered} \text { RDI ADCP } \\ 153 \mathrm{kHz} \\ \hline \end{gathered}$	603	202	368
Tube 19	$\begin{aligned} & \hline 74^{\circ} 01.648 \mathrm{~N} \\ & 15^{\circ} 31.513 \mathrm{~W} \end{aligned}$	341.5	25.09.04	$\begin{gathered} \text { SBE } 37 \text { P } \\ \text { SBE } 37 \\ \text { AR } 861 \text { B1S } \end{gathered}$	$\begin{gathered} 2967 \\ 2942 \\ 209 \end{gathered}$	$\begin{gathered} \mathbf{1 2} \\ 50 \\ 337 \end{gathered}$	$\begin{aligned} & 368 \\ & 368 \end{aligned}$
Tube 18	$\begin{aligned} & 74^{\circ} 04.339 \mathrm{~N} \\ & 15^{\circ} 47.315 \mathrm{~W} \end{aligned}$	200	27.09.04	$\begin{gathered} \text { SBE } 37 \text { P } \\ \text { SBE } 37 \\ \text { AR } 861 \text { B1S } \end{gathered}$	$\begin{gathered} 1399 \\ 2937 \\ 210 \end{gathered}$	$\begin{gathered} 20 \\ 60 \\ 197 \end{gathered}$	1)
HH3-04	$\begin{aligned} & 73^{\circ} 59.979 \mathrm{~N} \\ & 14^{\circ} 02.463 \mathrm{~W} \end{aligned}$	2088	29.09.04	SBE 16 RCM 8 P SBE 37 P RCM 7 SBE 37 RCM 8 SBE 37 P RCM 11 SBE 16 RCM 11 RT 661 B1S	2407 12301 2804 11297 2940 9815 1401 81 3024 171 200	$\mathbf{4 3}$ 44 $\mathbf{2 0 3}$ 204 480 481 $\mathbf{7 1 4}$ 715 $\mathbf{9 9 4}$ 995 1600 89	364 364 364 364 364 364 364 364 $364{ }^{3)}$ 328
HH5-04	$\begin{aligned} & 73^{\circ} 59.891 \mathrm{~N} \\ & 15^{\circ} 00.240 \mathrm{~W} \end{aligned}$	1188	29.09.04	SBE 16 RCM 8 SBE 37 P RCM 7 SBE 37 RCM 7 SBE 16 RCM 9 OP AR 861 B1S	$\begin{gathered} \hline 2412 \\ 12303 \\ 2863 \\ 11294 \\ 2941 \\ 11295 \\ 3025 \\ 1025 \\ 206 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{8 9} \\ 90 \\ \mathbf{2 5 0} \\ 251 \\ 485 \\ 486 \\ \mathbf{7 3 4} \\ 735 \\ 980 \\ \hline \end{gathered}$	364 364 364 364 364 364 364 $2)$

1) Tube could not be recovered during the RV Lance 2005 cruise.
2) No data, due to a leak.
3) Conductivity sensor didn't work during deployment.

Note: Bold numbers in the instrument depth column yields minimum depths measured by the individual instruments pressure sensor.

Table 6. Mooring deployments during Lance 18/2005

Mooring	Latitude Longitude	Water depth (m)	Date and time of first record	Instrument Type	Serial Number	Instr. Depth (m)	Record Length (days)
ADCP	$\begin{aligned} & 74^{\circ} 02.63 \mathrm{~N} \\ & 15^{\circ} 38.53 \mathrm{~W} \end{aligned}$	201	29.09.05	$\begin{gathered} \text { RDI ADCP } \\ 153 \mathrm{kHz} \end{gathered}$	585	201	
Tube 23	$\begin{aligned} & \hline 74^{\circ} 01.628 \mathrm{~N} \\ & 15^{\circ} 31.253 \mathrm{~W} \end{aligned}$	348	27.09.05	SBE 37 P SBE 37 P AR 861 B1S	$\begin{gathered} \hline 4049 \\ 4048 \\ 207 \end{gathered}$	$\begin{gathered} 24 \\ 62 \\ 346 \end{gathered}$	
Tube 22	$\begin{aligned} & 74^{\circ} 00.035 \mathrm{~N} \\ & 17^{\circ} 59.192 \mathrm{~W} \end{aligned}$	202	26.09.05	SBE 37 P SBE 37 RCM 8 P AR 861 B1S	$\begin{gathered} 4052 \\ 3529 \\ 10336 \\ 127 \end{gathered}$	$\begin{gathered} 17 \\ 55 \\ 97 \\ 200 \end{gathered}$	
HH3-05	$\begin{aligned} & 74^{\circ} 00.208 \mathrm{~N} \\ & 14^{\circ} 02.806 \mathrm{~W} \end{aligned}$	2069	01.10.05	SBE 16 RCM 8 P SBE 37 P RCM 8 P SBE 37 P RCM 8 P SBE 37 P RCM 8 P SBE 16 RCM 11 RT 661 B1S	$\begin{gathered} 2412 \\ 9835 \\ 4053 \\ 12321 \\ 3523 \\ 10335 \\ 2967 \\ 12322 \\ 2406 \\ 502 \\ 201 \end{gathered}$	$\begin{gathered} \hline 100 \\ 100 \\ 250 \\ 250 \\ 500 \\ 500 \\ 750 \\ 750 \\ 1000 \\ 1000 \\ 1400 \end{gathered}$	
HH5-05	$\begin{aligned} & \hline 73^{\circ} 59.433 \mathrm{~N} \\ & 15^{\circ} 12.285 \mathrm{~W} \end{aligned}$	1064	29.09.05	SBE 16 RCM 8 P SBE 37 P RCM 8 P SBE 37 RCM 8 P SBE 16 RCM 11 RT 661 B1S	$\begin{gathered} \hline 2407 \\ 9870 \\ 4050 \\ 12334 \\ 2942 \\ 9836 \\ 2404 \\ 503 \\ 204 \end{gathered}$	$\begin{gathered} \hline 97 \\ 98 \\ 251 \\ 252 \\ 485 \\ 486 \\ 729 \\ 730 \\ 862 \end{gathered}$	

Figure 1. The Nordic Seas and the positions of RV Lance sections and stations occupied in September/October 2005. Red and yellow dots indicates location of CTD stations and moorings, respectively. Yellow stars show the deployment site of the APEX floats. Numbers designate the station numbers.

Figure 2. Provisional potential temperature (upper) and salinity (lower) distribution along the hydrographic transect in September/October 2005. For location of the single stations see Figure 1. Greenland is found to the left in the Figure and the island seen between 600 km and 700 km is Jan Mayen. The basin to the left of Jan Mayen is the Greenland Sea. Whereas the plateau to the right is the Iceland Sea. The East Greenland Current is found over the East Greenland continental slope and there is some evidence of the Jan Mayen Polar Current centred around 100km north of Jan Mayen. To the south of Jan Mayen we will refer to the warm and saline surface layer as the Jan Mayen Atlantic Current.

Figure 3. TS-diagrams for the $74^{\circ} \mathrm{N}$ section, September/October 2005 (upper and lower). The water mass distribution is schematic shown in the both Figures. Polar Water (PW) ,Greenland Sea Arctic Surface Water (GS-ASW), East Greenland Shelf Bottom Water (EGS-BW), Recirculating Atlantic Water (RAW), upper Greenland Sea Arctic Intermediate Water (uGSAIW), upper Polar Deep Water (uPDW), Greenland Sea Arctic Intermediate Water (GSAIW), Canadian Basin Deep Water (CBDW), Euasian Basin Deep Water (EBDW) and Greenland Sea Deep Water (GSDW). Only every third data point are shown. Blue curve is the profile of st. $43\left(74^{\circ} \mathrm{N}, 10^{\circ} \mathrm{W}\right)$. For values of isopycnals used see Rudels et al. (2002).

Figure 4. TS-diagrams for the $74^{\circ} \mathrm{N}$ section, September 2002 (19.9-24.9)(upper left), October 2003 (5/10-7/10 and 12/10-13/10) (upper right), September/October 2004 (30/9-2/10) (lower left), and September/October 2005 (26/9-2/10)(lower right). Also shown is the five meter values of each station (green points for 2002, 2004, 2005, red points for (5/10-7/10) 2003 and blue points for (12/10-13/10) 2003. The surface water mass distribution is schematically shown. Polar Surface Water (PSW), Polar Water (PW) and Greenland Sea Arctic Surface Water (GS-ASW). Only every third data point is shown. Also shown is the freezing point curve.

Figure 5. One dimensional volumetric analysis showing the thickness of salinity bins of 0.02 for measurements in the depth range $0-500 \mathrm{~m}$ along the $74^{\circ} \mathrm{N}$ section. Data for salinity above 34.7 are not shown.

Figure 6. One dimensional volumetric analysis showing the thickness of salinity bins of 0.02 for measurements in the depth range $0-500 \mathrm{~m}$ along the $74^{\circ} \mathrm{N}$ section. Data for salinity below 34.7 are not shown.

Figure 7. TS-diagrams showing the property changes experienced by the upper instrument (microcat) of Tube 19 in the depth range 12 m to 30 m . The undisturbed measuring depth was approximately 12 m . The microcat time series have been divided into a monthly colour coding. Also shown is the freezing point curve.

Figure 8. 14 days boxcar filtered composite time series of five Tubes time series from September 2000 to September 2005. The time series are representative for the Tube at ($74^{\circ} 02 \mathrm{~N} ; 15^{\circ} 31 \mathrm{~W}$) in the nominal depth of $\sim 16 \mathrm{~m}$ (blue) and $\sim 46 \mathrm{~m}$ (red). During the first deployment instruments were found somewhat deeper ($\sim 40 \mathrm{~m}$ and $\sim 80 \mathrm{~m}$) and in the second deployment the tube was located a little closer to Greenland. Only hourly observations were used by the boxcar filter. Also shown are values from a nearby bottom mounted ADCP (cyan) and from a tube deployed and recovered at the East Greenland Shelf at $78^{\circ} 50 \mathrm{~N}$ by the Norwegian Polar Institute (in greenish).

Figure 9. Provisional salinity distribution along the $74^{\circ} \mathrm{N}$ hydrographic section in SeptemberOctober 2005. Also shown are the annual mean northward velocity in cm / s obtained by instruments (solid circles) during three different deployments. Going from right to left we have used instruments from the following moorings HH1-01, HH3-01, HH3-04, HH5-04, ADCP-03 and Tube22. Negative values indicates southward flow. At ADCP-03 quasibarotropic conditions exist.

Figure 10. Pressure time series from the upper (black) and lower (red) SBE16 on mooring HH3-04 at $74^{\circ} \mathrm{N}, 14^{\circ} 02 \mathrm{~W}$ from December $6^{\text {th }} 2004$ to January $15^{\text {th }} 2005$ showing the knockdown of instruments by currents.

Figure 11. Stick plot for daily filtered current data from the instrument at 44 m depth on mooring HH3-04 at 74° N, $14^{\circ} 02 \mathrm{~W}$ from December $6^{\text {th }} 2004$ to January $15^{\text {th }} 2005$. Every sixth measurement is shown.

Station list for the RV LANCE 18/2005 Cruise

58LA1805	014	01	ROS/CTD	092605	1939	BE	74	00.01	N	16	19.75	W	GPS	203	198	11	
58LA1805	014	01	ROS/CTD	092605	1947	во	74	00.01	N	16	19.87	W	GPS	203			
58LA1805	014	01	ROS/CTD	092605	1954	EN	74	00.04	N	16	20.03	W	GPS	201			
58LA1805	015	01	Ros/CTD	092605	2107	BE	74	00.04	N	16	00.02	W	GPS	210			
58LA1805	015	01	ROS/CTD	092605	2116	во	74	00.05	N	16	00.20	W	GPS	213	212	11	
58LA1805	015	01	ROS/CTD	092605	2124	EN	74	00.03	N	16	00.31	w	GPS	215			
58LA1805	016	01	Ros/CTD	092605	2239	BE	73	59.91	N	15	40.16	W	GPS	259			
58 LA 1805	016	01	ROS/CTD	092605	2248	Bо	73	59.76	N	15	40.46	W	GPS	273	274	9	
58 LA 1805	016	01	ROS/CTD	092605	2257	EN	73	59.60	N	15	40.76	W	GPS	275			
58LA1805	017	01	Ros/CTD	092605	2355	BE	74	00.00	N	15	20.65	W	GPS	907			
58LA1805	017	01	ROS/CTD	092705	0020	во	73	59.72	N	15	22.34	W	GPS	864	894	13	
58LA1805	017	01	ROS/CTD	092705	0047	EN	73	59.49	N	15	23.72	W	GPS	830			
58LA1805	018	01	ROS/CTD	092705	0141	BE	73	59.97	N	15	00.53	W	GPS	1167			
58LA1805	018	01	ROS/CTD	092705	0210	Bо	73	59.46	N	15	02.65	W	GPS	1182	1198	10	
58LA1805	018	01	ROS/CTD	092705	0239	EN	73	58.80	N	15	04.07	W	GPS	1206			
58LA1805	019	01	ROS/CTD	092705	0332	BE	73	59.89	N	14	40.54	W	GPS	1442			
58 LA 1805	019	01	ROS/CTD	092705	0403	Bо	73	59.22	N	14	42.65	W	GPS	1454	1457	41	
58LA1805	019	01	ROS/CTD	092705	0438	EN	73	58.53	N	14	44.41	w	GPS	1483			
58 LA 1805	020	01	MOR	092705	0831	BE	74	01.96	N	15	39.03	W	GPS	187	Recove	Y of ADCP mooring	04
58LA1805	020	01	MOR	092705	0942	EN	74	02.34	N	15	39.58	W	GPS	188			
58LA1805	021	01	MOR	092705	1015	BE	74	04.34	N	15	47.32	W	GPS	200	Recov	Fy of Tube 18	
58LA1805	021	01	MOR	092705	1125	EN	74	02.21	N	15	47.36	W	GPS	196	failed		
58LA1805	022	01	MOR	092705	1235	BE	74	01.61	N	15	31.95	W	GPS	313	Recov	Fy of Tube 19	
58LA1805	022	01	MOR	092705	1313	EN	74	01.27	N	15	33.98	W	GPS	279			
58LA1805	023	01	MOR	092705	1455	BE	74	01.50	N	15	31.83	W	GPS	349	Deplo	ment of Tube 23	
58LA1805	023	01	MOR	092705	1514	EN	74	01.61	N	15	31.43	W	GPS	349			
58LA1805	024	01	MOR	092705	1636	BE	73	59.89	N	15	00.75	W	GPS	1190	Recove	¢y HH5-04	
58LA1805	024	01	MOR	092705	1721	EN	73	59.02	N	15	00.90	W	GPS				
58LA1805	025	01	MOR	092705	1908	BE	73	59.94	N	14	03.33	W	GPS		Recove	y y H3-04	
58LA1805	025	01	MOR	092705	2029	EN	73	58.13	N	14	05.94	W	GPS	1868			
58LA1805	026	01	MOR	092905	0851	BE	74	02.64	N	15	37.59	W	GPS	206	Deplo	nent ADCP-05	
58LA1805	026	01	MOR	092905	0917	EN	74	02.63	N	15	38.53	W	GPS	201			
58 LA 1805	027	01	MOR	092905	1032	BE	74	04.28	N	15	47.72	W	GPS	201	dredg	ng for Tube 18	
58LA1805	027	01	MOR	092905	1123	EN	74	04.41	N	15	46.56	W	GPS	197	no resul	ult	
58LA1805	028	01	MOR	092905	1508	BE	74	00.26	N	14	55.10	W	GPS	1219	Deploy	nent HH5-05	
58LA1805	028	01	MOR	092905	1655	EN	73	59.43	N	15	12.29	W	GPS	1064			

58LA1805	029	01	ROS /CTD	092905	1857	BE	73	59.77	N	14	20.10	W	GPS	1837		
58LA1805	029	01	ROS/CTD	092905	2007	BO	73	57.58	N	14	21.69	W	GPS	1881	1886	10
58LA1805	029	01	ROS/CTD	092905	2055	EN	73	56.15	N	14	23.06	W	GPS	1961		
58LA1805	030	01	ROS/CTD	092905	2231	BE	73	59.87	N	14	00.22	W	GPS	2108		stopped at 700 m
58LA1805	030	01	ROS/CTD	092905	2251	BO	73	59.48	N	14	00.16	W	GPS	2130	738	cabble problems
58LA1805	030	01	ROS/CTD	092905	2304	EN	73	59.12	N	14	00.02	W	GPS	2150		
58LA1805	030	02	ROS / CTD	093005	0043	BE	73	59.89	N	14	00.09	W	GPS	2112		
58LA1805	030	02	ROS/CTD	093005	0121	BO	73	58.65	N	14	00.08	W	GPS	2157	2169	5
58LA1805	030	02	ROS/CTD	093005	0207	EN	73	57.67	N	13	58.44	W	GPS	2199		
58LA1805	031	01	MOR	100105	1114	BE	73	57.58	N	14	02.34	W	GPS	2169	Deploy	ment HH3-05
58LA1805	031	01	MOR	100105	1238	EN	74	00.20	N	14	02.80	W	GPS	2069		
58LA1805	032	01	ROS /CTD	100105	1349	BE	74	00.01	N	13	40.02	W	GPS	2386		
58LA1805	032	01	ROS/CTD	100105	1426	BO	73	59.80	N	13	39.72	W	GPS	2373	2410	7
58LA1805	032	01	ROS/CTD	100105	1510	EN	73	59.57	N	13	39.72	W	GPS	2375		
58LA1805	033	01	ROS / CTD	100105	1548	BE	73	59.97	N	13	20.17	W	GPS	2549		
58LA1805	033	01	ROS/CTD	100105	1634	BO	73	59.98	N	13	20.21	W	GPS	2548	2595	8
58LA1805	033	01	ROS/CTD	100105	1720	EN	73	59.94	N	13	19.98	W	GPS	2550		
58LA1805	034	01	ROS / CTD	100105	1802	BE	73	59.99	N	13	00.00	W	GPS	2677		
58LA1805	034	01	ROS/CTD	100105	1848	BO	73	59.68	N	12	58.26	W	GPS	2647	2724	10
58LA1805	034	01	ROS/CTD	100105	1935	EN	73	59.35	N	12	56.56	W	GPS	2651		
58LA1805	035	01	ROS /CTD	100105	2007	BE	74	00.00	N	12	40.18	W	GPS	2733		
58LA1805	035	01	ROS/CTD	100105	2054	BO	73	59.99	N	12	38.95	W	GPS	2739	2796	8
58LA1805	035	01	ROS/CTD	100105	2141	EN	73	59.88	N	12	38.01	W	GPS	2727		
58LA1805	036	01	ROS / CTD	100105	2214	BE	73	59.97	N	12	20.23	W	GPS	2797		
58LA1805	036	01	ROS/CTD	100105	2304	BO	73	59.95	N	12	19.40	W	GPS	2799	2851	7
58LA1805	036	01	ROS/CTD	100105	2352	EN	74	00.04	N	12	17.50	W	GPS	2800		
58LA1805	037	01	ROS/CTD	100205	0025	BE	74	00.03	N	11	59.98	W	GPS	2863		
58LA1805	037	01	ROS/CTD	100205	0113	BO	74	00.08	N	11	59.47	W	GPS	2865	2922	8
58LA1805	037	01	ROS/CTD	100205	0200	EN	74	00.17	N	11	59.37	W	GPS	2865		
58LA1805	038	01	ROS /CTD	100205	0233	BE	73	59.99	N	11	40.00	W	GPS	2874		
58LA1805	038	01	ROS/CTD	100205	0323	BO	73	59.97	N	11	39.28	W	GPS	2879	2934	8
58LA1805	038	01	ROS/CTD	100205	0411	EN	73	59.91	N	11	38.69	W	GPS	2878		
58LA1805	039	01	ROS /CTD	100205	0444	BE	73	59.99	N	11	20.17	W	GPS	2962		
58LA1805	039	01	ROS/CTD	100205	0534	BO	73	59.93	N	11	21.27	W	GPS	2956	3029	10
58LA1805	039	01	ROS/CTD	100205	0621	EN	73	59.84	N	11	22.36	W	GPS	2964		
58LA1805	040	01	ROS/CTD	100205	0701	BE	73	59.91	N	11	00.15	W	GPS	3002		
58LA1805	040	01	ROS/CTD	100205	0752	BO	73	59.39	N	11	01.07	W	GPS	2962	3066	10
58LA1805	040	01	ROS/CTD	100205	0844	EN	73	58.54	N	11	01.87	W	GPS	2956		
58LA1805	041	01	ROS / CTD	100205	1206	BE	73	59.92	N	10	40.24	W	GPS	3033		

58 LA1805	041	01	ROS / CTD	100205	1300	BO	73	59.66	N	10	40.84	W	GPS	3006	3075	8
58LA1805	041	01	ROS / CTD	100205	1351	EN	73	59.69	N	10	40.91	W	GPS	3007		
58 LA 1805	042	01	ROS / CTD	100205	1534	BE	74	00.02	N	10	20.22	W	GPS	3024		
58 LA 1805	042	01	ROS / CTD	100205	1629	BO	73	59.92	N	10	20.96	W	GPS	3021	3089	8
58 LA 1805	042	01	ROS / CTD	100205	1727	EN	73	59.89	N	10	21.29	W	GPS	3017		
58 LA 1805	043	01	ROS / CTD	100205	1805	BE	74	00.05	N	10	00.20	W	GPS	3057		
58LA1805	043	01	ROS / CTD	100205	1901	BO	73	59.83	N	10	01.61	W	GPS	3057	3119	10
58LA1805	043	01	ROS / CTD	100205	1955	EN	73	59.39	N	10	02.93	W	GPS	3051		
58 LA 1805	044	01	ROS / CTD	100205	2058	BE	73	50.05	N	09	52.12	W	GPS	3062		
58LA1805	044	01	ROS / CTD	100205	2200	BO	73	49.54	N	09	54.72	W	GPS	3060	3126	10
58 LA 1805	044	01	ROS / CTD	100205	2257	EN	73	48.99	N	09	57.20	W	GPS	3054		
58 LA 1805	045	01	ROS / CTD	100305	0100	BE	73	30.49	N	09	36.98	W	GPS	2829		
58 LA 1805	045	01	ROS / CTD	100305	0151	BO	73	30.36	N	09	37.73	W	GPS	2829	2898	8
58LA1805	045	01	ROS / CTD	100305	0241	EN	73	30.13	N	09	38.34	W	GPS	2848		
58 LA 1805	046	01	ROS / CTD	100305	0449	BE	73	10.72	N	09	21.69	W	GPS	2990		
58LA1805	046	01	ROS / CTD	100305	0541	BO	73	10.26	N	09	21.80	W	GPS	2977	3046	11
58 LA 1805	046	01	ROS / CTD	100305	0639	EN	73	09.62	N	09	24.34	W	GPS	2970		
58 LA 1805	047	01	ROS / CTD	100305	0841	BE	72	51.17	N	09	06.86	W	GPS	2516		
58 LA 1805	047	01	ROS / CTD	100305	0930	BO	72	50.26	N	09	06.00	W	GPS	2499	2551	8
58 LA 1805	047	01	ROS / CTD	100305	1022	EN	72	49.27	N	09	05.95	W	GPS	2483		
58 LA1805	048	01	ROS / CTD	100305	1215	BE	72	31.72	N	08	52.47	W	GPS	2478		
58 LA 1805	048	01	ROS / CTD	100305	1300	BO	72	31.62	N	08	52.46	W	GPS	2477	2519	8
58LA1805	048	01	ROS / CTD	100305	1345	EN	72	31.46	N	08	51.85	W	GPS	2466		
58 LA 1805	049	01	ROS / CTD	100305	1541	BE	72	12.28	N	08	37.73	W	GPS	2388		
58 LA 1805	049	01	ROS / CTD	100305	1623	BO	72	12.26	N	08	37.02	W	GPS	2364	2421	10
58 LA 1805	049	01	ROS / CTD	100305	1707	EN	72	12.16	N	08	36.75	W	GPS	2351		
58 LA 1805	050	01	ROS / CTD	100305	1905	BE	71	52.71	N	08	23.81	W	GPS	2372		
58LA1805	050	01	ROS / CTD	100305	1949	BO	71	52.37	N	08	23.37	W	GPS	2410	2424	7
58LA1805	050	01	ROS / CTD	100305	2033	EN	71	51.91	N	08	22.57	W	GPS	2464		
58LA1805	051	01	ROS / CTD	100305	2228	BE	71	33.07	N	08	09.54	W	GPS	2153		
58 LA 1805	051	01	ROS / CTD	100305											2178	10
58 LA 1805	051	01	ROS / CTD	100305	2357	EN	71	31.67	N	08	10.26	W	GPS	2087		
58 LA 1805	052	01	ROS / CTD	100405	0113	BE	71	20.29	N	08	00.96	W	GPS	2087		
58LA1805	052	01	ROS / CTD	100405	0152	BO	71	19.87	N	08	01.76	W	GPS	2103	2123	9
58LA1805	052	01	ROS / CTD	100405	0231	EN	71	19.44	N	08	02.72	W	GPS	2111		
58LA1805	053	01	ROS / CTD	100405	0331	BE	71	11.99	N	07	59.97	W	GPS	1509		
58 LA 1805	053	01	ROS / CTD	100405	0400	BO	71	11.95	N	07	59.86	W	GPS	1498	1515	25
58LA1805	053	01	ROS / CTD	100405	0428	EN	71	11.92	N	07	59.99	W	GPS	1471		
58LA1805	054	01	ROS / CTD	100405	0443	BE	71	10.96	N	08	00.18	W	GPS	992		

58 LA 1805	054	01	ROS / CTD	100405	0504	BO	71	10.98	N	08	00.23	W	GPS	999	1014	25	
58LA1805	054	01	ROS / CTD	100405	0524	EN	71	11.00	N	08	00.37	W	GPS	1041			
58 LA1805	055	01	ROS / CTD	100505	0941	BE	70	44.74	N	09	11.13	W	GPS	301			
58LA1805	055	01	ROS / CTD	100505	0948	BO	70	44.84	N	09	11.07	W	GPS	293	295	9	
58LA1805	055	01	ROS / CTD	100505	0955	EN	70	44.93	N	09	11.05	W	GPS	291			
58 LA 1805	056	01	ROS / CTD	100505	1040	BE	70	40.30	N	09	17.29	W	GPS	315			
58LA1805	056	01	ROS / CTD	100505	1048	BO	70	40.39	N	09	17.19	W	GPS	327	326	9	
58 LA 1805	056	01	ROS / CTD	100505	1056	EN	70	40.53	N	09	17.22	W	GPS	352			
58 LA 1805	057	01	ROS / CTD	100505	1140	BE	70	34.99	N	09	24.22	W	GPS	550			
58LA1805	057	01	ROS / CTD	100505	1152	BO	70	35.03	N	09	23.95	W	GPS	527	542	12	
58LA1805	057	01	ROS / CTD	100505	1207	EN	70	35.23	N	09	23.65	W	GPS	520			
58 LA 1805	058	01	ROS / CTD	100505	1248	BE	70	29.95	N	09	31.19	W	GPS	526			
58 LA 1805	058	01	ROS / CTD	100505	1300	BO	70	30.01	N	09	30.90	W	GPS	536	541	7	
58 LA 1805	058	01	ROS / CTD	100505	1312	EN	70	30.09	N	09	30.72	W	GPS	546			
58 LA 1805	059	01	ROS / CTD	100505	1350	BE	70	24.92	N	09	37.76	W	GPS	632			
58 LA 1805	059	01	ROS / CTD	100505	1404	BO	70	24.93	N	09	37.56	W	GPS	638	650	8	
58 LA 1805	059	01	ROS / CTD	100505	1420	EN	70	24.81	N	09	37.16	W	GPS	644			
58LA1805	060	01	ROS / CTD	100505	1454	BE	70	19.93	N	09	44.39	W	GPS	1044			
58LA1805	060	01	ROS / CTD	100505	1518	BO	70	20.00	N	09	44.11	W	GPS	1035	1044	10	
58 LA 1805	060	01	ROS / CTD	100505	1539	EN	70	19.89	N	09	44.10	W	GPS	1041			
58 LA 1805	061	01	ROS / CTD	100505	1619	BE	70	14.97	N	09	51.03	W	GPS	1270			
58LA1805	061	01	ROS / CTD	100505	1645	BO	70	15.01	N	09	50.84	W	GPS	1260	1277	10	
58 LA 1805	061	01	ROS / CTD	100505	1711	EN	70	15.02	N	09	50.65	W	GPS	1252			
58 LA 1805	062	01	ROS / CTD	100505	1804	BE	70	07.95	N	10	00.51	W	GPS	1822			
58 LA 1805	062	01	ROS / CTD	100505	1838	BO	70	08.32	N	10	00.17	W	GPS	1794	1837	9	
58LA1805	062	01	ROS / CTD	100505	1914	EN	70	08.69	N	09	59.72	W	GPS	1774			
58 LA 1805	063	01	ROS / CTD	100505	2020	BE	69	59.91	N	10	10.91	W	GPS	1913			
58LA1805	063	01	ROS / CTD	100505	2100	BO	70	00.17	N	10	09.85	W	GPS	1886	1930	10	
58LA1805	063	01	ROS / CTD	100505	2140	EN	70	00.60	N	10	09.05	W	GPS	1868			
58LA1805	064	01	ROS / CTD	100505	2328	BE	69	44.97	N	10	30.10	W	GPS	1644			
58LA1805	064	01	ROS / CTD	100505	2358	BO	69	44.84	N	10	29.66	W	GPS	1656	1668	8	
58LA1805	064	01	ROS / CTD	100605	0028	EN	69	44.77	N	10	29.32	W	GPS	1669			
58 LA 1805	065	01	ROS / CTD	100605	0203	BE	69	29.99	N	10	49.49	W	GPS	1748			
58 LA 1805	065	01	ROS / CTD	100605	0233	BO	69	30.02	N	10	49.45	W	GPS	1749	1769	8	
58LA1805	065	01	ROS / CTD	100605	0308	EN	69	30.10	N	10	49.71	W	GPS	1741			
58 LA 1805	066	01	ROS / CTD	100605	0443	BE	69	15.08	N	11	08.30	W	GPS	1730			
58 LA 1805	066	01	ROS / CTD	100605	0518	BO	69	15.12	N	11	09.26	W	GPS	1823	1778	8	
58 LA 1805	066	01	ROS / CTD	100605	0551	EN	69	15.01	N	11	10.18	W	GPS	1868			
58LA1805	066	02	FLOAT	100605	0604	DE	69	15.00	N	11	10.50	W	GPS	1876			APEX Float No. 2304

58LA1805	067	01	ROS/CTD	100605	0743	BE	68	59.99	N	11	27.53	W	GPS	1783			
58LA1805	067	01	ROS/CTD	100605	0815	BO	68	59.79	N	11	28.60	W	GPS	1782	1808	6	
58LA1805	067	01	ROS/CTD	100605	0850	EN	68	59.73	N	11	29.83	W	GPS	1782			
58LA1805	067	02	FLOAT	100605	0856	DE	68	59.72	N	11	29.96	W	GPS	1787			APEX Float No. 2305
58LA1805	068	01	FLOAT	100605	1132	DE	68	59.95	N	10	30.90	W	GPS	2204			APEX Float No. 2306
58LA1805	069	01	FLOAT	100705	0933	DE	68	49.01	N	03	38.11	W	GPS	3155			APEX Float No. 2307
58LA1805	070	01	FLOAT	100705	1047	DE	68	54.00	N	03	14.20	W	GPS	3631			APEX Float No. 2245

